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The Current Population Survey (CPS)

e Sponsored by the U.S. Census and the Bureau of Labor Statistics
* Collects household employment and income information
* Monthly survey

* Households are in survey for 8 months with an 8-month gap
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CPS modernization efforts are underway to
tackle declining response rates

100 Current Population Rate (CPS) Response Rates ° CPS |S cu rr‘ently Conducted Via
: telephone or personal interviews
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e CPS will provide an Internet self-
response option by 2027

Household survey response rates (%)
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https://www.bls.gov/osmr/response-rates/household-survey- https://www.census.gov/programs-surveys/cps/about/modernization.html
response-rates.htm
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Here, we present a simplified workflow for
incorporating Internet self-response into CPS

Eligibility for Internet self-response includes a name entry screening step
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Household respondents must have a valid name
entry to be eligible for Internet mode

* The survey will display the * Respondents may refuse to give
respondents’ name to them to the interviewer their name

verify their identify

* The interviewer will enter a
description or refusal in the

* Name entry must be ... name entry field

* Appropriate e Resident
* Uniquely identifiable e Jane Doe
* Son
e Refused
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CPS needs an efficient and high performing
name screening tool to categorize name entries

Options Why ML?

* Manual curation Desired attribute | Manual | Rules | ML |

° Automated rules Measure of certainty x - v

* Machine learning (ML) model Sj:;:ltzcy : : :
Efficiency x v v
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Three name entry categories

bl Desoipon |compls

name An actual person’s name or initials Debbie Chang
Haley Hunter-Zinck
D. C.
description A word or phrase that is not a name but describes a person’s role, Head of household
profession, or familial relationship. Sister
Son-in-law
invalid Any inappropriate words or phrases, generic placeholders, typos or Anonymous
completely non-alphabetic entries found in one or more words in Jane Doe
names 000

We resolved entries adhering to more than one category via the following precedence rules:
invalid > description > name
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We start with an unlabeled dataset of first and
last names from the CPS

e Perform manual curation of name entries (gold standard dataset)
e Develop categorization guidelines by consensus

e Encode guidelines programmatically as rules
e Automatically categorize name entries by rules (silver standard dataset)

e Construct features (derived data elements) from each name entry
e Train a supervised machine learning model based on features and silver labels

e Use the gold labels to validate the results of the trained machine learning model )
Vtbued © Perform error analysis on the trained machine learning models

J
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We benchmarked supervised machine learning models
against rules-based annotations

1. Feature engineering and classical machine learning (ML) classifier
2. Sentence transformer and classical ML classifier
3. Fine-tuned transformer model for text classification
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We calculated 6 classes of features to represent the
name entries as input to the classical ML model

Feature sets
1. Character and word counts
2. Gazetteer (word list) based
similarity
3. Typos check
Profanity score check

5. Named entity recognition and
part of speech

6. Document level embeddings
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Model training
* XGBoost

* Hyperparameter tuning
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Transformer-based text classification
methods represent name entries as /= w e _—

semantically meaningful vectors

* Use pretrained models for - ﬂ{ghq -
representing responses as vectors L A“ Ny, W\ i)

embeddings)
( g J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep
° Tra N SfO rmer su Ch as B E RT Bidirectional Transformers for_ Languag_e Understanding..” arXiv, May 24, 2019. Accessed:

Mar. 27, 2024. [Online]. Available: http://arxiv.org/abs/1810.04805
e Sentence transformer

Softmax:Iassifier -1;1 ‘
(u, v, lu-v]) cosine-sim(u, v)

i . . /\ /\
* Fine-tune for classification task } ] } ‘f } : } } : }
* Train final layers for classifying e | [ e [ | [ s |
em bedded responses SenteﬁceA Sent;nceB Sente?\ceA Sent:nceB

. N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings using Siamese BERT-
* InpUt to CIaSSICaI ML mOdeI Networks.” arXiv, Aug. 27, 2019. Accessed: Mar. 04, 2024. [Online]. Available:

http://arxiv.org/abs/1908.10084
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Machine learning models outperform rules-
based annotation

Benchmarking performance (macro)

Method
1.0 1 E Rules
B Classical machine learning
0.83 0.85 B Sentence transformer
0.8 1 BN Fine-tuned transformer
e
]
m
E 0.6
w
o Training on 100,000 randomly sampled
L 0.47 name entries, programmatically annotated.
0.2 4 Evaluation conducted on 5,000 randomly
sampled and held-out unique name entries.
0.0 -

Multiclass first name Multiclass last name
Outcome
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The most common prediction error for fine-tuned transformers
occurs when names are predicted as descriptions

Surnames that are also dictionary words are often predicted as descriptions.

Common surnames in the 2010 U.S. Census
walker

Common surnames that are also English or Spanish words
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Word clouds generated from 2010 U.S. Census surname data publicly available at
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
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Model inference, especially with sentence-transformer
encoding, is faster than rules-based inference

Inference runtime across methods and outcomes
1776

Method

1750 A 1725
Bl Rules
| B Classical machine learning
1500 B Sentence transformer
BN Fine-tuned transformer
1250 A
o
w 1000 S
E
c . .
£ 7504 Inference times for 5,000 name entries.
500 1 Compared with 2,400 seconds to manually
annotate the same name entry set.
250 1
D_
Multiclass first name Multiclass last name
Outcome
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Conclusions

* Machine learning models provide increased performance and efficiency
over rules-based strategies for name screening

* We train a high performing name screening model with
programmatically labeled data

* Fine-tuned transformers provide a balance between performance and
efficiency
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Sentence transformer

* Model: all-mpnet-base-v2

https://huggingface.co/sentence-transformers/all-mpnet-base-v2

* Encodes each text as a 768-
dimension vector

* Fine-tuned for clustering and
semantic search

e Use XGBoost model to predict
name entry categorization

United States®

Census

Softmax classifier

[ur v, IU_V”

>~

-1.

+

1

cosine-sim{u, v)

>~

u

v

u

v

4 4
pooling pooling
) )
BERT BERT

)
Sentence A Sentence B

4 4
pooling pooling
[) )
BERT BERT
f f
Sentence A Sentence B

N. Reimers and I. Gurevych, “Sentence-BERT: Sentence

Embeddings using Siamese BERT-Networks.” arXiv, Aug. 27, 2019.
Accessed: Mar. 04, 2024. [Online]. Available:
http://arxiv.org/abs/1908.10084
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Fine-tuned transformer

* Model: distilled RoOBERTa

https://huggingface.co/distilbert/distilroberta-base

* Encodes each text as a 768-
dimension vector

* Fine-tune for name entry
classification task
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J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding.”
arXiv, May 24, 2019. Accessed: Mar. 27, 2024. [Online]. Available:

http://arxiv.org/abs/1810.04805
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