Setting Up a SIPP Analysis

- The SIPP’s complexity calls for extra care & obsessiveness
- Recommendation: Construct all analyses in a permanent set of STATA do files:
 1. A dataset construction file that loads in wave files, other data files, and drops unnecessary variables (leaving your core wave files unchanged)
 2. A variable construction file that reshapes variables (and maybe file format) as you need them for the analysis
 3. A set of analysis files that log and run each analysis (table 1; table 2; and so on)
- Using this structure makes it easier to:
 - Add variables to your dataset and reconstruct
 - Find mistakes—because you will know where to look
 - Re-run analyses and precisely replicate your results
SIPP Critical Issue: What’s the Unit of Analysis?

- **Individuals**: Each individual sample member
- **Households**: “a group of persons who occupy a housing unit”
 - Includes: Families, a group of friends sharing a house, two unrelated families, co-housed, an unmarried mother and boyfriend
- **Family**: 2+ people related by birth, marriage, or adoption who reside together
 - See any potential problems here, given family complexity?
 - Easier to focus on dyads (mother/child) or a focal person
- **Related subfamily**: A nuclear family related to, but not including the household reference person
- **Unrelated subfamily**: A nuclear family that is not related to the household reference person
- **Note**: For all but the individual-level, you will have *multiple records* in a reference month for each member of the unit

Identifying Your Unit of Analysis

<table>
<thead>
<tr>
<th>Unit of Analysis</th>
<th>Unique Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual (>= 1996)</td>
<td>ssuid + epppnum</td>
<td>sampling unit ID + person number</td>
</tr>
<tr>
<td>Individual (< 1996 panel)</td>
<td>suid + entry + pnum</td>
<td>sampling unit + entry address + person number</td>
</tr>
<tr>
<td>Household</td>
<td>ssuid + shhadid</td>
<td>sampling unit ID + current address ID</td>
</tr>
<tr>
<td>Family</td>
<td>ssuid + shhadid + fid</td>
<td>sampling unit ID + current address ID + family ID</td>
</tr>
<tr>
<td>Subfamily</td>
<td>ssuid + shhadid + rsid</td>
<td>Sampling unit ID + current address ID + family ID for related/ unrelated subfamilies</td>
</tr>
</tbody>
</table>

Good practice to add spanel to any identifier when stacking panels

NOTE: Family IDs do not stay constant across months, so you can’t use the identifier to track a specific family from month-to-month
Unit of Analysis: What Observations do you Need?

- **Individuals**: Keep all respondent observations in your sample universe
- **Households**: Keep 1 observation per household
 - Household heads are the “owner or renter of note”
 - Can change from month-to-month
 - Use errp = 1 | 2, or household head number, ehrefper = epppnum
 - Make sure characters match each other
- **Families**: Keep 1 observation per family
 - efrefper = epppnum
 - Same process for subfamilies (esfrfper)
- Household/family/subfamily variables are recorded in each sample member’s observation, making life easier

Ordering Observations Chronologically

- A respondent’s observations are ordered by:
 - WAVE (swave), then REFERENCE MONTH (srefmon)
 - Sort ssuid epppnum swave srefmon to order your dataset by unique respondent, then observations chronologically
- Note that in any given reference month, observations coming from 4 calendar months
- Can also order observations by calendar month and year
 - rhcalmn = Calendar month
 - rhcalyr = Calendar year
 - Note that in any given calendar month, observations are coming from 4 reference months
Creating a Year-Month Marker

- Syntax by Matt Rutledge
 - He uses Stata’s time series functions now, but I still find this syntax useful

/* Reformat month and year variables to make one time-marking variable */

```
#delimit;

generate zero = 0;

egen tempmo = concat(zero rhcalmn);
tostring rhcalmn, generate(rhcalmn2);
replace tempmo = rhcalmn2 if rhcalmn > 9;
egen month = concat(rhcalyr tempmo);
drop tempmo rhcalmn zero rhcalmn2;
```

SIPP Critical Issue: Dealing with Seam Bias

- Best known limitation of the SIPP is its “seam bias”
- Survey responses are most accurate in reporting months (month of the interview)
- Thus, a disproportionate number of transitions/changes occur between reference month 4 of wave t, and reference month 1 of wave $t+1$
 - Worse for some variables, better for others (employment spells)
- This affects the precision of estimates, especially of duration models
- **But a starting note:** The SIPP’s relatively short seam could be considered a strength, rather than a weakness!
- Rotation groups mean in any calendar-year month you’ve got observations from all 4 rotation groups (on and off seam)
With the 2004 panel, Census began to use dependent interviewing (DI) more comprehensively than before:

- Prompting respondents with affirmative responses from the previous wave’s reference month; and
- Utilizing responses from the month in which the interview itself occurred
 - Current month responses were first collected in 1996 when Census transitioned to computer-assisted survey administration, but not yet utilized in the survey

- DI reduced—but did not eliminate—seam bias
- And this reduced variability in outcomes such as earnings/incomes from wave-to-wave

2004 Panel: Improved, but Still Visible, Seam Bias (Moore, 2008)

Improved, but Still Visible, Seam Bias (Moore, 2008)

Figure 1.A.4: MONTH-TO-MONTH AFDC/TANF CHANGES (unweighted) IN THE 2001 AND 2004 SIPP PANELS, WAVES 1 - 4 (edited data using cases with any AFDC/TANF receipt interviewed in all 4 waves)
Improved, but Still Visible, Seam Bias (Moore, 2008)

Figure 1.B.1: MONTH-TO-MONTH PRIVATE HEALTH INSURANCE COVERAGE CHANGES (unweighted) IN THE 2001 AND 2004 SIPP PANELS, WAVES 1 - 4
(edited data using cases with any private coverage interviewed in all 4 waves)

Strategies for Dealing With Seam Bias

- **Option 1:** Add an indicator variable for reporting months in your models
 - Recommended by Ham, Li & Shore-Sheppard, 2007 as the safest practical method

- **Option 2:** Keep only reporting month observations
 - keep if srefmon == 4
 - Treat the data longitudinally as 4 month snap shots
 - If you hope to do exact durations in months, this will be imprecise

- **Option 3:** Collapse data into person-wave observations
 - Requires some arbitrary decisions when turning monthly data into four-month values

- **Option 4:** Predict mis-reporting and adjust accordingly (Ham et al. method), see technical paper
SIPP Critical Issue:
Using appropriate Weights

- For representative estimates, weights are important because the SIPP:
 1. oversamples from high poverty areas (which is good!)
 2. is stratified, not purely random

- Some (usually economists) argue weights are unnecessary for multivariate estimates that control for the characteristics of oversampled populations
 - Census experts shudder uncontrollably when they hear this argument made...

- Often weights do not affect point estimates appreciably, but sometimes they do!!!

- Protect yourself: do it both ways
 - With/without weights

- The longer your recall period, the more important weights become because of attrition issues

Weights: Which to Use?

<table>
<thead>
<tr>
<th>Unit of Analysis (Monthly Estimates)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual</td>
<td>wpfinwgt</td>
</tr>
<tr>
<td>Household</td>
<td>whfnwgt</td>
</tr>
<tr>
<td>Family</td>
<td>wffinwgt</td>
</tr>
<tr>
<td>Subfamily</td>
<td>wsfinwgt</td>
</tr>
</tbody>
</table>

- Or, take the person weight of the householder/family head, which will stay more stable over time
- Use of these weights adjusts point estimates but does not adjust standard errors (except if you use replicate weights)
- Presentation by Tracy Mattingly makes the case for using replicate weights and provide syntax to use them to adjust both point estimates and standard errors
Weighting for Longitudinal Analysis

- Attrition presents challenges when it comes to accurately modeling longitudinal outcomes
 - Less-advantaged respondents disproportionately drop from the sample over time due to residential instability
 - If you use the sample weight in t, but restrict to individuals in the sample in t+1, your weights may no longer be representative

- “Longitudinal” life is messy: (people die)
- One option for lag/lead variables is to use the monthly weight in the final month of your study period
 - So use t+1 weights rather than t
 - Then you are weighting on a cross-sectional sample, looking retrospectively
 - Even, still, you may experience problems with non-random entrance into the sample (probably minor)

Longitudinal Weights

- For longitudinal analyses for a calendar year, or the duration of the panel, use longitudinal weights
- These track sample members who remain “in universe” for the duration of the time period
- These weights adjust for attrition by increasing weights on sample members representing sub-populations who attrit (a word?)
 - But this means that sample cells for small subpopulations can get VERY small
- Merge into core using unique individual ID (ssuid + epppnum)
- Convert monthly responses into year/panel data using unique identifiers
 keep if rhcalyr == 2009
 bysort ssuid epppnum: egen annearnings = total(tpearn)
SIPP Critical Issue:
Imputation

- When a respondent refuses or is unable to answer a question, Census will impute a value for them
 - Oversimplified description: Census uses values from other, similar respondents

- **Upside:** The SIPP public use data files have little missing data

- **Downside:** We sometimes question the accuracy of imputed data

- (Generally) rising rates of data imputation are a concern for the accuracy of household survey data

Imputation

- Ways of dealing with imputation:
 1. Use only non-imputed data
 - This creates numerous problems and is not a practice that Census endorses
 - My recommendation is to do this as a sensitivity test at most
 - Difficult to do with some measures recoded from a series of variables
 2. If using 2+ panels, compare differences between the **end** of 1 panel and the **beginning** of the next (maybe wave 2)
 - Imputation is generally LOWEST at the beginning of the panel and HIGHEST at the end
 3. Alternative imputation: You can re-impute using multiple imputation or another technique
SIPP Critical Issue: Adjusting your Standard Errors

- The SIPP’s stratified sample design leads to overly narrow standard errors
- Can lead to misleading labeling of statistical significance
- This must be accounted for in your analysis. Choices for doing so that have precedence in the literature:
 1. Using replicate weights (see Tracy Mattingly’s lecture)
 2. Using STATA’s svyset function
 3. Robust clustering of standard errors by state
 4. Generating bootstrapped standard errors
 - no good way to do this with weights
 - Not an approach endorsed by Census

Adjusting your Standard Errors

OPTION 2: USE STATA’S SVYSET TO ADJUST FOR COMPLEX SURVEY DATA

Example: Predicting Earnings by Education Level using 2008 panel, wave 1
(Oversimplified, silly example)

```stata
keep if tage > 17 & tage < 65
svyset ghlfSam [pw = wpfinwgt], strata(gvarstr)
svy: reg tpearn i.eeducate
```

Point estimate associated with a master’s degree relative to less than a 1st grade education:
$8,129 (350.95)$
Adjusting your Standard Errors

OPTION 1: ROBUST CLUSTERING OF STANDARD ERRORS BY STATE

Example: Predicting Earnings by Education Level using 2008 panel, wave 1
(Oversimplified, silly example)

Keep if tage > 17 & tage < 65

reg tpearn i.educate [pw = wpfinwgt], vce (cluster tfipsst)

Point estimate/se associated with a master’s degree relative to less than a 1st grade education (monthly income):
$8,129 (367.92)

Adjusting your Standard Errors

OPTION 3: USING BOOTSTRAPPING WITH REPLACEMENT

Example: Predicting Earnings by Education Level using 2008 panel, wave 1
(Oversimplified, silly example)

- Note: No good way I know of in Stata to bootstrap in the context of a complex stratified sample design

keep if tage > 17 & tage < 65

bootstrap, reps(500): reg tpearn i.educate

Point estimate associated with a master’s degree relative to less than a 1st grade education:
$8,348 (168.24)