Multivariate Tests for Phase Capacity

Federal CASIC Workshops (FedCASIC)
U.S. Census Bureau Headquarters
Suitland, MD
March 4, 2015

Taylor Lewis¹

¹The opinions, findings, and conclusions expressed in this presentation are those of the author and do not necessarily reflect those of the U.S. Office of Personnel Management.
Outline

I. Background

II. Brief Summary of Prior Research – Univariate Phase Capacity Tests

III. Multivariate Extensions of Phase Capacity Tests:
 1. Wald Chi-Square Method
 2. Non-Zero Trajectory Method

IV. Retrospective Application using the 2011 Federal Employee Viewpoint Survey

V. Limitations and Further Research
I. Background
Nonresponse and Nonrespondent Follow-Up

- Invariably, not all sampled units respond to the initial survey solicitation

- Most surveys repeatedly follow-up with nonrespondents making additional mailings, phone calls, household visits, etc., often chasing a preset response rate target

- Each subsequent reminder brings in a new “wave” of data, which tends to be progressively smaller in size, thereby impacting estimates less and less

- Other temporal delineations of waves possible
The Notion of Phase Capacity

• In their discussion of responsive survey design, Groves and Heeringa (2006) define the following key terms:
 – design phase – spell of data collection period with stable frame, sample, and recruitment protocol
 – phase capacity – point during a design phase at which additional responses cease influencing key statistics

• Rather than fixating on a target response rate, they argue one should change design phases (e.g., switch mode, increase incentive) or discontinue nonrespondent follow-up altogether once phase capacity has been reached

• Problem for practitioners: no calculable rule given
Illustration of Phase Capacity in the Federal Employee Viewpoint Survey (FEVS)

• The FEVS is an annual organizational climate survey administered by the U.S. Office of Personnel Management (OPM) to a sample of 800,000+ federal employees from 80+ agencies

• Web-based instrument comprised mainly of attitudinal items posed on a five-point Likert scale

• Key statistics are “percent positive” estimates based on the dichotomization of, for example, “Completely Agree” or “Agree” elections versus all other possible response choices

• Nonrespondents are sent weekly reminder emails
Example of a Nonresponse-Adjusted Percent Positive Trend Using Cumulative Responses

Goal is to identify point estimate stability at earliest possible wave

Note: estimate stability does not necessarily imply that the value converged upon is free of nonresponse error; it implies that additional follow-ups under the same protocol will continue to be ineffectual.
II. Brief Summary of Prior Research – Univariate Phase Capacity Tests
Previously Proposed Univariate Tests

• Idea is to multiply impute (Rubin, 1987) the missing data $M (M \geq 2)$ times for nonrespondents as of wave k, then delete responses obtained during wave k, specifically, and repeat for nonrespondents as wave $k – 1$ → result is $2M$ completed data sets and two nonresponse-adjusted, MI point estimates

• A t-test is carried out by dividing the two point estimates’ difference by an estimate of the MI variance of the difference – see Appendix A of Lewis (2014a) for example

• Phase capacity declared once the test statistic is insignificant
Previously Proposed Univariate Tests (2)

- RGG approach is limited in that it is only designed to track a sample mean and inapplicable to surveys that conduct weighting adjustments for nonresponse

- Lewis (2014b) describes a new method circumventing these limitations: same premise, except nonresponse-adjusted point estimates are formulated based on two sets of weights, one for respondents through wave \(k \) and another for respondents through wave \(k - 1 \)

- As with the RGG approach, tricky part is deriving a variance factoring in the covariance attributable to shared respondent set through wave \(k - 1 \)

- Three viable methods to do so are discussed: (1) Taylor series linearization; (2) simple linear regression on a stacked data set; and (3) replication
III. Multivariate Extensions of Phase Capacity Tests
Background

• A practical limitation of both the RGG approach and Lewis’ variant is that they are univariate in nature → how would one proceed if independently conducted on two or more point estimates with conflicting results?

• Chapter 4 of Lewis (2014a) proposes two multivariate methods to provide a single yes/no answer for a battery of D point estimates:
 1. Wald Chi-Square Method – direct multivariate extension of two-sample t-test using matrix algebra
 2. Non-Zero Trajectory Method – based on ideas of longitudinal data analysis (Singer and Willett, 2003), jointly fit D simple linear regression models of point estimates’ relative percent change

• Both methods default to treating each point estimate difference equivalently, but differential importance can be assigned to each via a contrast vector
Wald Chi-Square Method

- Let \mathbf{D} denote a $D \times 1$ matrix of nonresponse-adjusted point estimate differences, and let \mathbf{S} denote the corresponding $D \times D$ variance-covariance matrix.

- Entries of \mathbf{S} can be obtained via Taylor series linearization or replication (i.e., as discussed in Lewis (2014b)).

- Supposing the goal is to test for no significant differences, the test statistic is

$$
\chi^2_W = \mathbf{D}^T \mathbf{S}^{-1} \mathbf{D}
$$

which is referenced against a chi-square distribution with $D - 1$ degrees of freedom.
Non-Zero Trajectory Method

- Find the D differences’ 3 most recent relative percent changes (to harmonize potential scale incongruities):

<table>
<thead>
<tr>
<th>Wave</th>
<th>Item 4</th>
<th>Rel % Chg</th>
<th>Item 5</th>
<th>Rel % Chg</th>
<th>Item 13</th>
<th>Rel % Chg</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k - 3$</td>
<td>75.2%</td>
<td>--</td>
<td>83.6%</td>
<td>--</td>
<td>88.5%</td>
<td>--</td>
</tr>
<tr>
<td>$k - 2$</td>
<td>75.3%</td>
<td>0.2%</td>
<td>83.8%</td>
<td>0.2%</td>
<td>88.6%</td>
<td>0.1%</td>
</tr>
<tr>
<td>$k - 1$</td>
<td>75.7%</td>
<td>0.5%</td>
<td>83.9%</td>
<td>0.2%</td>
<td>88.6%</td>
<td>0.0%</td>
</tr>
<tr>
<td>k</td>
<td>76.1%</td>
<td>0.4%</td>
<td>84.2%</td>
<td>0.3%</td>
<td>88.7%</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

- Treating w as a wave indicator one unit apart (e.g., 1, 2, 3), one then estimates the following model:

$$
\Delta_d = \beta_0 + \beta_2 + \ldots + \beta_{D} + \beta_{11}w + \beta_{12}w + \ldots + \beta_{1D}w + \epsilon_d
$$

where the first set of D terms represent estimate-specific intercepts, and the second set represents estimate-specific slopes.

- Disadvantage: at least 4 waves needed (Wald needs 2)
If point estimates have stabilized, we would expect all model coefficients to be insignificantly different from zero; we can test for this using a traditional linear model F test

$$F = \hat{\beta}^T (\text{cov}(\hat{\beta}))^{-1} \hat{\beta}$$

which can be referenced against an F distribution with D and $2D$ degrees of freedom, respectively.
IV. Retrospective Application using the 2011 Federal Employee Viewpoint Survey
FEVS 2011 Application Details

• Batteries of point estimates investigated were the four Human Capital Assessment and Accountability Framework (HCAAF) indices, which are averages of the percent positive estimates of thematically-linked items (e.g., Job Satisfaction, Talent Management)

• Using timestamp information for three agencies, respondents were apportioned into waves, and each successive (accumulating) set of respondents was assigned a set of weights raked to known marginal distributions from sample frame (e.g., agency component, minority status, gender, and supervisory status)

• Retroactively implemented the two methods for each agency x index combination to compare and contrast performance
Wald method concludes phase capacity earlier, in part because it requires fewer waves (2 vs. 4 for NZT); this results in larger residual differences relative to the final wave estimate (see NR Error column) – recall there is an upward trend in the point estimates underlying indices.

<table>
<thead>
<tr>
<th>Index</th>
<th>Stopping Wave</th>
<th>Estimate</th>
<th>NR Error</th>
<th>Stopping Wave</th>
<th>Estimate</th>
<th>NR Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JS</td>
<td>4</td>
<td>68.5</td>
<td>-0.6</td>
<td>6</td>
<td>68.8</td>
<td>-0.2</td>
</tr>
<tr>
<td>LKM</td>
<td>3</td>
<td>60.2</td>
<td>-1.4</td>
<td>9</td>
<td>61.6</td>
<td>0.0</td>
</tr>
<tr>
<td>ROPC</td>
<td>2</td>
<td>53.6</td>
<td>-2.6</td>
<td>9</td>
<td>56.2</td>
<td>0.0</td>
</tr>
<tr>
<td>TM</td>
<td>5</td>
<td>59.9</td>
<td>-0.7</td>
<td>9</td>
<td>60.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Agency 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JS</td>
<td>2</td>
<td>69.8</td>
<td>-1.0</td>
<td>5</td>
<td>71.0</td>
<td>0.1</td>
</tr>
<tr>
<td>LKM</td>
<td>2</td>
<td>72.8</td>
<td>-0.4</td>
<td>5</td>
<td>73.1</td>
<td>0.1</td>
</tr>
<tr>
<td>ROPC</td>
<td>4</td>
<td>66.3</td>
<td>0.1</td>
<td>5</td>
<td>66.4</td>
<td>0.2</td>
</tr>
<tr>
<td>TM</td>
<td>2</td>
<td>68.7</td>
<td>-1.3</td>
<td>5</td>
<td>70.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Agency 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JS</td>
<td>3</td>
<td>73.1</td>
<td>-0.7</td>
<td>6</td>
<td>73.5</td>
<td>-0.3</td>
</tr>
<tr>
<td>LKM</td>
<td>2</td>
<td>70.5</td>
<td>-1.3</td>
<td>7</td>
<td>71.5</td>
<td>-0.2</td>
</tr>
<tr>
<td>ROPC</td>
<td>4</td>
<td>63.7</td>
<td>-0.6</td>
<td>5</td>
<td>63.8</td>
<td>-0.5</td>
</tr>
<tr>
<td>TM</td>
<td>2</td>
<td>69.4</td>
<td>-1.0</td>
<td>6</td>
<td>70.2</td>
<td>-0.2</td>
</tr>
</tbody>
</table>
V. Limitations and Further Research
Practical Limitations

• Actual adoption of these approaches in FEVS would face resistance because:
 – Desirable to treat each agency equitably; beginning in FEVS 2012, field period was preset to 6 weeks for all agencies
 – Higher scores are better, and so there may be opposition to any change, shortened field period included, believed to reduce point estimates

• Data must be collected/processed real-time, and it was tacitly assumed that the full sample is “active” – may be impractical for in-person surveys covering a vast geographical expanse taking weeks or months for interviewers to exhaust sample cases, although tests could be applied to subsamples
Practical Limitations (2)

• Even when entire sample is “active,” may not be feasible to send reminders simultaneously as in the FEVS Web mode – alternative data collection wave definition may be a plausible work-around

• Despite aversion to phrase stopping rule, stopping was the only design phase change investigated in this research – would be interesting to apply in a sequential mixed-mode survey setting or in surveys with two stages of data collection, such as the National Immunization Survey (NIS) or the Residential Energy Consumption Survey (RECS)

• In both of those surveys, the preeminent estimates are those derived from secondary data collection stage, medical records (NIS) and energy suppliers (RECS); hence, one might want the tests to have differential sensitivities
Further Research

• A general limitation of the two traditional perspectives of nonresponse (deterministic vs. stochastic) is that the act of responding is considered a dichotomous event.

• Chapter 2 of Lewis (2014a) extends the familiar sample mean nonresponse error/bias theory to account for a time dimension:
 • *Deterministic perspective* – conceptualize sample frame as composed of $K + 1$ mutually exclusive domains, units that always respond during wave k ($k = 1, \ldots, K$), specifically, and a domain for units that never respond.
 • *Stochastic perspective* – partition a unit’s traditional response propensity into a vector of K wave-specific propensities, the sum of which constitutes its overall propensity.

• To be presented at the TSE15 conference later this year.
Further Research (2)

• Wagner and Raghunathan (2010) proposed a prospective stopping rule, aiming to quantify the likelihood a pending wave of follow-up will change a point estimate more than some predetermined amount.

• Chapter 5 of Lewis (2014a) points out several limitations and introduces a more general approach; unfortunately, results were lackluster in simulation and application, even when the expected value of the point estimate was stable over the data collection period.

• Applications of time series analysis and forecasting could prove fruitful, especially if predictions beyond wave $k + 1$ are desired.
Thanks!

Questions/Comments?
Taylor.Lewis@opm.gov
References

