Integer Programming for Calibration

Luca Sartore, PhD – National Institute of Statistical Sciences, Kelly Toppin – National Agricultural Statistics Service, Clifford Spiegelman, PhD – Texas A&M University

May 3, 2016

Outline

- Census of Agriculture
- Calibration
- Integer calibration
- Results
- Conclusion

Census of Agriculture

- National Agricultural Statistics Service (NASS) conducts a Census of Agriculture every 5 years.
- The Census provides a detailed picture of U.S. farms, ranches and the people who operate them.
- It is the only source of uniform, comprehensive agricultural data for every state and county in the United States.

Census of Agriculture

- NASS also obtains information on most commodities from administrative sources or from NASS surveys of non-farm populations, such as
 - USDA Farm Service Agency program data,
 - Agricultural Marketing Services market orders,
 - livestock slaughter data, and
 - cotton ginning data.

Census Mail List

- Definition of farm: an agricultural operation that produced or would produced and sold agricultural products of at least \$1000 during the year of the census
- Every effort is made to make the Census Mail List (CML) as complete as possible, but it does not contain all U.S. farms, resulting in list undercoverage.
- CML also contains misclassified agricultural operations
- Some farms on the CML do not respond to the census, nonresponse is present.

Dual System Estimation (DSE)

- To adjust for undercoverage, nonresponse and misclassification, NASS uses capture-recapture methodology where two independent surveys are required.
- Calibration is conducted to ensure that the census estimates are consistent with the available information on commodity production.
- This DSE method produces adjusted weights that are used as the starting values for the calibration process.

Calibration

Forces weighted estimates of calibration variables to match known totals

 Idea was introduced by Lemel and developed by Deville and Särndal.

Calibration

We want T = Aw, where

T is vector partitioned into y known and y^* unknown population totals,

A is the matrix of collected data from population, and w is a vector of p unknown weights.

Find the solution of the linear system $y = A^*w$, where

y is a vector of n known point targets (benchmarks), and A^* is a $n \times p$ submatrix of collected data.

Often produces non-integer weights

NASS Census 2012 Calibration

 The targets used in calibration are the commodity products (commodity targets), and the 65 farm targets.

 Each target is calibrated within a pre-specified tolerance range, which is generally less than 2% of the target.

NASS Census 2012 Calibration

 NASS has a need for integer weights for its final totals in the census publication. It uses a two part process.

1. Linear truncated calibration to produce noninteger weights.

2. Rounding the weights from step 1.

Problems with old approach

Too many missed targets

 Final weights are very different than initial (DSE) weights

Computational intensive and time consuming

Alternative proposal

Old approach

New approach

Description of the problem

The following objective function is minimized:

$$\min_{w \in \mathcal{W} \subseteq \mathbb{N}^p} \sum_{i=1}^n \rho_{\ell_i, u_i} (y_i - a_i^{\mathsf{T}} w) + \lambda P(w)$$

 ℓ_i is the lower bound for $a_i^{\mathsf{T}} w$,

 u_i is the upper bound for $a_i^T w$,

 $\rho(\cdot)$ is a generic loss function,

 λ is a non negative scalar,

 $P(\cdot)$ is a distance from the original weights

Description of the algorithm

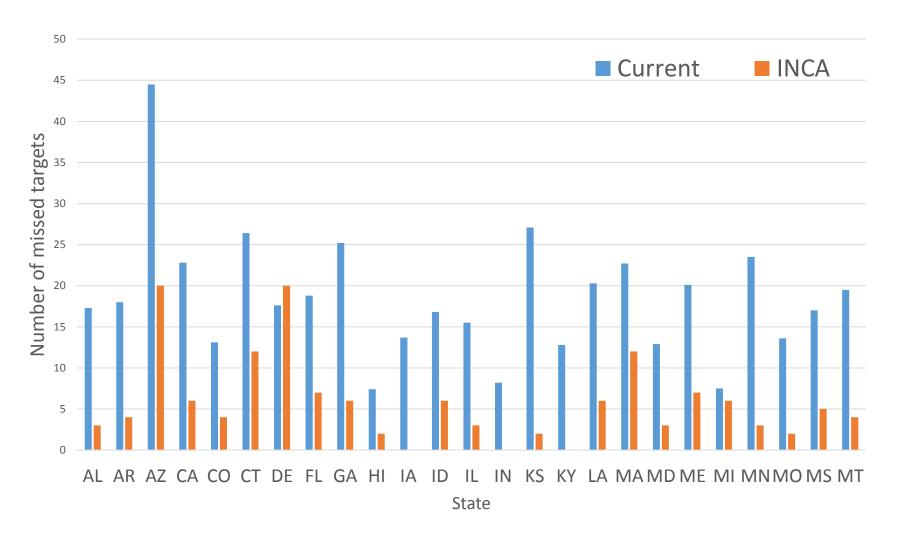
1. All unfeasible weights are truncated to their closest boundary, and in order to minimize the objective function, non-integer weights are then rounded sequentially according to an importance index based on the gradient.

2. Each weight, according to the magnitude of the gradient, is allowed to move unit-shifts which decreases the objective function.

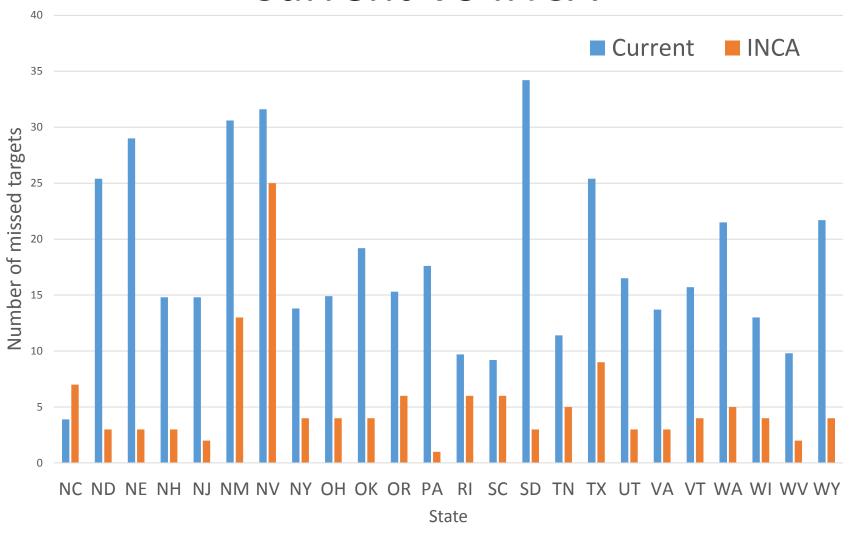
Integer Calibration (INCA)

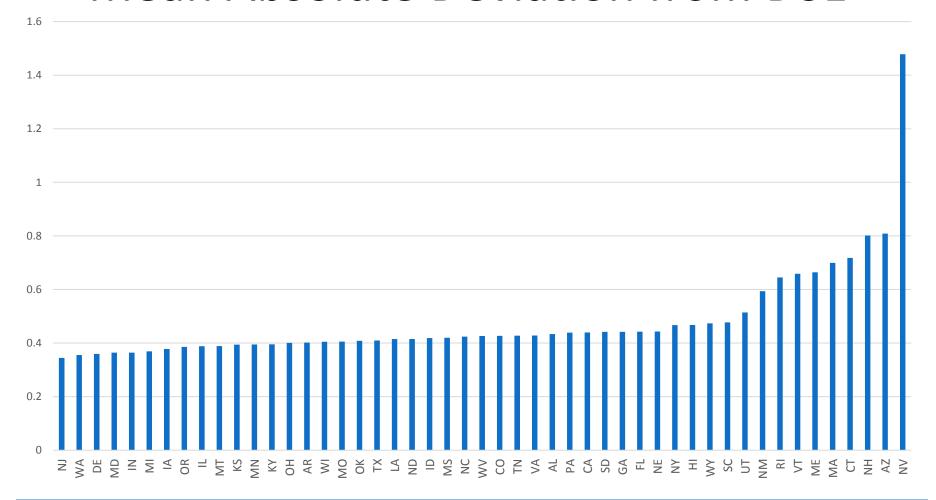
Based on gradient

Using R and C++ programming languages

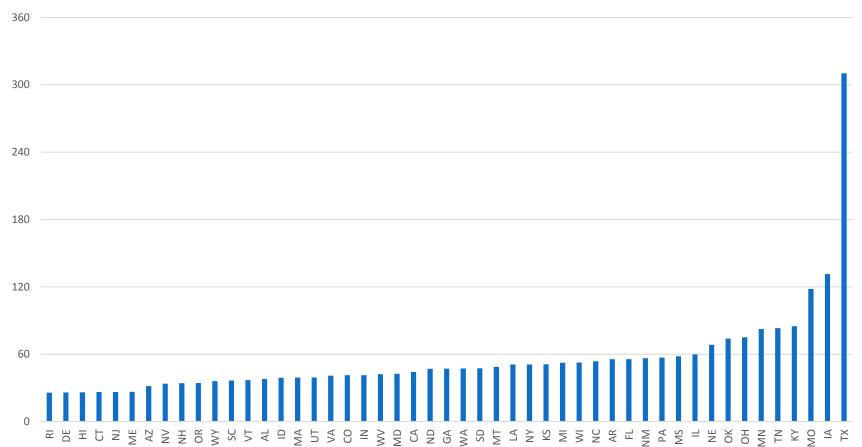

• Output weights are in the set {1, 2, 3, 4, 5, 6}

Output weights are close to the input weights


Current VS INCA


Current VS INCA

INCA Mean Absolute Deviation from DSE



INCA Computational Speed

Time (sec)

Average time per state using old code is 30 mins

Findings

 Integer Calibration decreases the number of missed targets in 47 of the 49 states

Integer Calibration decreases calibration time

Status

Moving to incorporate the INCA program into 2017 Census of Agriculture

Thank you!

Luca Sartore, PhD - Luca.Sartore@nass.usda.gov Kelly Toppin - Kelly.Toppin@nass.usda.gov Clifford Spiegelman, PhD - Cliff@stat.tamu.edu

