Autocoding the Survey of Occupational Injuries and Illnesses – 5 years in

Alexander Measure
Example Narrative
Job title: sanitation worker

What was the employee doing just before the incident?
mopping floor in gym

What happened?
slipped on wet floor and fell

What part of the body was affected?
fractured right arm

What object directly harmed the employee?
wet floor

Codes Assigned
Occup: 37-2011 (Janitor)
Nature: 111 (Fracture)
Part: 420 (Arm)
Event: 422 (Fall, slipping)
Source: 6620 (Floor)
Supervised Machine Learning

Recipe

- Gather previously coded data
- Select a learning algorithm
- Learn the autocoder from the data

Basis for most “AI” today

- Works well
- Much easier to implement
```python
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import LogisticRegression

# Read in some data
df_train = pd.read_excel('Data/msha_2010-2011.xlsx')
df_uncoded = pd.read_excel('Data/msha_2012.xlsx')

# Fit a model on df_train
vectorizer = CountVectorizer()
X_train = vectorizer.fit_transform(df_train['NARRATIVE'])
model = LogisticRegression()
model.fit(X_train, df_train['INJ_BODY_PART'])

# Autocode df_uncoded
X_uncoded = vectorizer.transform(df_uncoded['NARRATIVE'])
df_uncoded['AUTOCODE'] = model.predict(X_uncoded)
```
Does it Work?

- Sample 1000 cases for “gold standard”
 - Recode each with panel of experts so we know true code
- Train autocoder on non-gold-standard data
 - Autocode gold standard
- How often does autocode match expert?
- What about manual coding process?
 - Human + regional reviewer + national reviewer + rule based edits?
Human vs. Computer Coding

Accuracy

<table>
<thead>
<tr>
<th>Category</th>
<th>Computer</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupation</td>
<td>74.3</td>
<td>68.3</td>
</tr>
<tr>
<td>Nature</td>
<td>88.2</td>
<td>82</td>
</tr>
<tr>
<td>Part</td>
<td>87.4</td>
<td>84.6</td>
</tr>
<tr>
<td>Event</td>
<td>61.7</td>
<td>52.2</td>
</tr>
<tr>
<td>Source</td>
<td>65.8</td>
<td>62.7</td>
</tr>
</tbody>
</table>
The benefits of probabilistic models

- Predicted Prob \approx True Prob
 - It mostly knows what it doesn’t know
 - Maybe a human knows?
Finding the right threshold

- For each threshold between 0 and 100%
 - If probability is above threshold, use autocode
 - Otherwise use human code
 - Evaluate resulting codes against gold standard
 - Repeat

- Which threshold produces best overall quality?
What if something unexpected happens?

- Move slowly
- Keep humans in the loop
- Hold back a sample of cases and continually reassess
% of codes automatically assigned to SOII

- Occupation
- Nature
- Part
- Source
- Event

(estimated)
Additional Resources

- **Tutorials**
 - Logistic Regression
 - Neural Networks
 - https://colab.research.google.com/drive/1g3MVMCLOYshI_gaqMkDDj9gtG7yQQxib?ts=5c98e613

- **Papers**
 - Code: https://github.com/USDepartmentofLabor/soii_neural_autocoder
Contact Information

Alexander Measure
Economist
Office of Safety and Health Statistics
www.bls.gov/iif
202-691-6185
measure.alex@bls.gov