Predicting Self-Response Rates

Via generalized additive models with interactions

Emanuel Ben-David

In collaboration with Shibal Ibrahim, Rahul Mazumder and Peter Radchenko

Center for Statistical Research and Methodology US Census Bureau

April 5, 2022

Shape your future START HERE >

2022 Federal Computer Assisted Survey Information Collection Workshops

- Since the 1990s, the Census Bureau has been working on developing models for predicting the self-response rate for each census tract (or block) based on the characteristics of the tract (or block).
- These models are used to identify hard-to-count (HTC) areas in preparation for the next decennial census.
- The first model was developed for predicting a HTC score in planning the 2010 Census.
- The current model is a linear regression model that includes 25 covariates form the 2014 Planing Data Base (PDB).
- These are variables highly correlated with the self-response rate.

The Response Outreach Area Mapper (ROAM) released in 2019 is an application for predicting the Low Response Score (LRS), a metric for Hard-to-Survey Populations, based on a similar linear regression model.

- In 2012, the U.S. Census Bureau carried out a crowd-sourcing competition through the Kaggle.com to explore the best machine learning methods for predicting the 2010 Census self-response rates.
- The challenge was to predict 2010 Census mail return rates using the 2012 Census Planning Database (PDB) and any other publicly available sources of data.
- Although models based on ensembles of regression trees won the challenge, they were not found interpretable and useful for the intended applications.

- We propose a new model based on Generalized Additive Models with interactions via ℓ_0 regularization.
- We show that these models are:
 - \cdot interpretable
 - effectively predictive, comparable with the state-of-the-art black-box machine learning methods such as XGBoost and deep learning for identify hard-to-survey populations
 - amenable to automatic variable selection in high-dimensional regression

A simple description

• The standard two-way interaction GAM is given by

$$g\left(\mathbb{E}(y|\mathbf{x})\right) = \sum_{j \in [p]} f_j(x_j) + \sum_{j < k} f_{j,k}(x_j, x_k).$$

- As a generalized linear model, *g* is the link function.
- Functions f_j and $f_{j,k}$ are unknown and need to be estimated from the data.
- A key problem in the estimation of two-way interaction models is the explosion in the number of unknown parameters.
- To facilitate interpretation, we advocate a parsimonious model, hence a model with a small number of main and interaction effects.

The sparsity pattern of a linear model with main and interaction effects

The sparsity pattern of a GAM with main and interaction effects

Performance compared with several benchmark models

Туре	Model	RMSE	MAE	#Covariates
Linear Models (LMs)	Ridge Enter your search term	6.804(0.080)	5.254(0.051)	295
	Lasso	6.803 (0.080)	5.254(0.051)	221
	L0Learn $(\ell_0 - \ell_2)$	6.813(0.080)	5.268(0.051)	136
	LM+Interactions (Lasso)	6.528(0.077)	5.026(0.049)	264
				(76 Mn + 1598 Int)
	LM+Interactions with	$6.621 \ (0.078)$	5.086 (0.049)	276
	Strong Hierarchy (hierScale)			(276 Mn + 4885 Int)
Nonparametric Additive Models (AM)	AM under ℓ_0 (ours)	$6.593\ (0.078)$	5.120(0.049)	182
	$\mathbf{AM}{+}\mathbf{Interactions} \ \mathbf{under} \ \ell_0$	6.467 (0.077)	4.973 (0.049)	160
	(ours)			(16 Mn + 174 Int)
	AM+Interactions with	6.452 (0.076)	4.995 (0.049)	131
	${\bf Strong}\ {\bf Hierarchy}\ ({\rm ours})$			(131 Mn + 173 Int)
Nonparametric	XGBoost	6.440 (0.076)	4.973 (0.049)	295
(Non-interpretable)	Feedforward Neural Networks	6.501 (0.077)	4.996 (0.049)	295

Predicted ACS self-response rates for the US

Predicted ACS self-response rates for Washington DC

Regularization path of the GAM

Interaction plots for the GAM

- The main paper: https://arxiv.org/abs/2108.11328
- The source code in python: https://github.com/ShibalIbrahim/Additive-Models-with-Structured-Interactions

Thank You!