Using Linked Data Sources To Predict Occupations With Respirator Or Mask Use Based On Establishment Characteristics

Danny Friel

Office of Compensation and Working Conditions
U.S. Bureau of Labor Statistics

April 6, 2022

About this project

- Collaborators:
- Michelle Myers, Bureau of Labor Statistics
- Dee Zamora, Bureau of Labor Statistics
- Xingyou Zhang, Bureau of Labor Statistics
- Katherine N. Yoon, National Institute for Occupational Safety \& Health
- Megan Casey, National Institute for Occupational Safety \& Health
- Emily J. Haas, National Institute for Occupational Safety \& Health
- CDC COVID-19 funds were provided to initiate survey development and pilot testing. Resources to execute the survey have not yet been allocated. This effort was conducted under CDC-BLS IAA 21FED210000070HL which ended September 30, 2021 due to lack of funds.

Agenda

■ Introduce the Survey of Respirator Use and Practices (SRUP)
\square Respondent burden associated with occupational data collection
■ Proposed solution: predicting occupations via an algorithm

- Key factors:
- Occupations likely to have respirator or mask use
- Occupations likely to be present at each establishment
- Algorithm specifications

Survey of Respirator Use and Practices (SRUP)

■ Objective: To obtain accurate national data about the management of respiratory hazards and respirator use

- Last conducted in 2001
- Part 1: Establishment-level questions
- Part 2:Occupation-level questions

Puzzle: occupation-level data collection

■ For each respondent, we need to identify one occupation for which information will be sought
■ In an ideal setting, we could simply choose an occupation from those present at each establishment

- Since we don't have this information, we would have to:
- ask respondents for a complete list of occupations
- accurately enter them into the data collection interface, and
- choose one for data collection
- very burdensome

Predicting occupations at SRUP establishments

■ To reduce respondent burden, we proposed using a menu of occupations

- The menus would have held 14 algorithm-based predictions
- The respondent would indicate which (if any):
- Are present at the establishment
- Use respirators or masks
\square The algorithm would be successful if each respondent indicates that at least one occupation on their menu
 meets the two criteria

Key factors for occupation prediction

\square Factor 1: Select occupations that are likely to use respirators or masks
■ Factor 2: Select occupations that are likely to be present at the SRUP establishment at hand

- The algorithm generates a selection pool of predictions and prioritizes them according to these factors

Identifying priority occupations

- Factor 1: Menus should contain occupations likely to wear respirators and/or masks
■ The Occupational Information Network (O*NET) database identifies occupations with documented use of personal protective equipment (PPE)
- We classified occupations into three priority groups for the SRUP

Priority group	Type of PPE use (O*NET)	Number of occupations
1	Respirators or masks	164
2	Other PPE	128
3	None	556

Identifying "similar" establishments

■ Factor 2: Occupations on each menu should be likely to be present at the establishment at hand

- We identified establishments similar to those in the SRUP sampling frame
i.e., those with the same NAICS (industry) code, size class, or state
- Sources: Occupational Employment and Wage Statistics (OEWS) program and the Survey of Occupational Injuries

Establishments with uncommon characteristics

■ Some NAICS/size/state combinations have only a few observations, resulting in < 14 occupations
■ We relax the criteria systematically to generate more options:

1. PPE priority (priority 1,2 , or 3)
2. Establishment similarity (NAICS/size/state, NAICS/size, or NAICS only)
3. Data source (OEWS or SOII)
4. NAICS level (6-, 5-, 4-, 3-, or 2-digit match)

Anatomy of the occupation selection pool

Contact Information

Danny Friel

Office of Compensation and Working Conditions U.S. Bureau of Labor Statistics friel.daniel@bls.gov

