# NLP in Practice: Applying Natural Language Processing to Survey Text Data

**Roundtable Discussion** 

FedCASIC April 16, 2024



### Natural Language Processing

Models that make use of human language as data

- Rule-based or machine learning approaches
- Tasks such as
  - Speech recognition and text to speech
  - Document classification
  - Summarization of documents
  - Information retrieval
  - Topic modeling
  - Named entity recognition
  - Text matching
  - Machine translation
  - And *many* more





### Agenda

- Introductions
- Q&A with the Panel Moderator
- Q&A with the Audience



### Who We Are



#### Erin Boon

#### Ayme Tomson



#### Melissa Pollock

Data Scientist BLS Office of Survey Methods Research

Panel Moderator

Data Scientist BLS Office of Prices & Living Conditions

Lead Data Scientist for Consumer Price Index Housing Address Matching Project Economist BLS Office of Prices & Living Conditions

Product owner for Consumer Expenditure Diary Autocoder



#### **Daniel Todd**

Data Scientist BLS Office of Compensation and Working Conditions

Product owner for Survey of Occupational Injuries and Illnesses (SOII) Autocoder



## Consumer Price Index Housing Address Matching

#### Ayme Tomson

Data Scientist BLS Office of Prices & Living Conditions Division of Consumer Prices and Price Indexes



## **Office of Prices and Living Conditions (OPLC)**

Programs:

- Consumer Price Index (CPI)
- Producer Price Index (PPI)
- U.S. Import and Export Price Indexes (MXPI)
- Consumer Expenditures (CE)



## **OPLC Data Science Team**

Support OPLC program economists and statisticians through state-of-the-art computing and statistical methods to ensure the accuracy, timeliness, and relevance of OPLC's outputs.

Projects:

- Alternative Data
- Data Imputation
- Data Analytics
- Automation

- Code Translation / Modernization
- Webscraping
- Dashboards / Visualization Tools
- API Development



## **OPLC Data Science Team**

Support OPLC program economists and statisticians through state-of-the-art computing and statistical methods to ensure the accuracy, timeliness, and relevance of OPLC's outputs.

NLP Projects:

- Alternative Data
- Data Imputation
- Data Analytics
- Automation

BLS

## **Project Description & Goal**

- The Consumer Price Index (CPI) Housing team verifies BLS subsidy and unit level data. This project compares matching techniques using the Housing and Urban Development (HUD) data as a supplementary data source of subsidy and unit level address information.
- Goal: Use one year of BLS and HUD data to assess current matching methodology and explore address matching improvements.



## **Project Members**

- OPLC Data Scientists
  - ► Ayme Tomson
- Consumer Price Index (CPI) Housing Team
  - Brian Adams
  - ► Craig Brown
  - Austin Enderson-Ohrt
  - Ben Houck
  - ► Paul Liegey

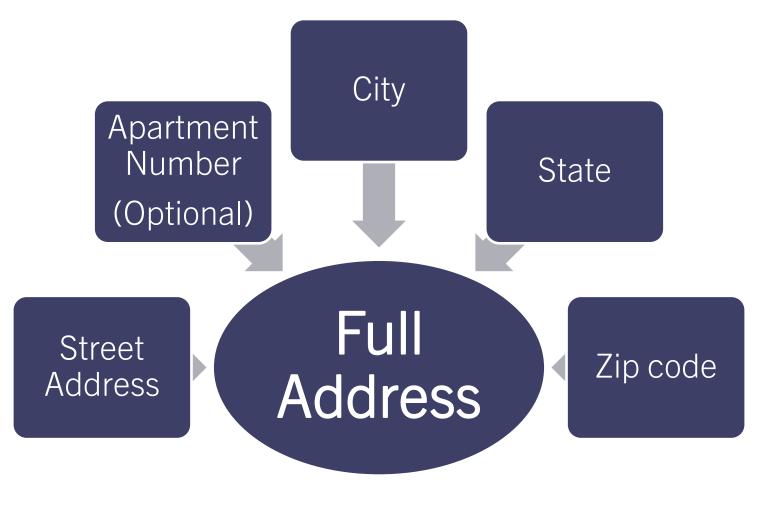


## **Address Matching vs Geocoding**

- Geocoding estimating the physical location of an address
- Address Matching determining if two addresses represent the same physical space



## **Address Matching**

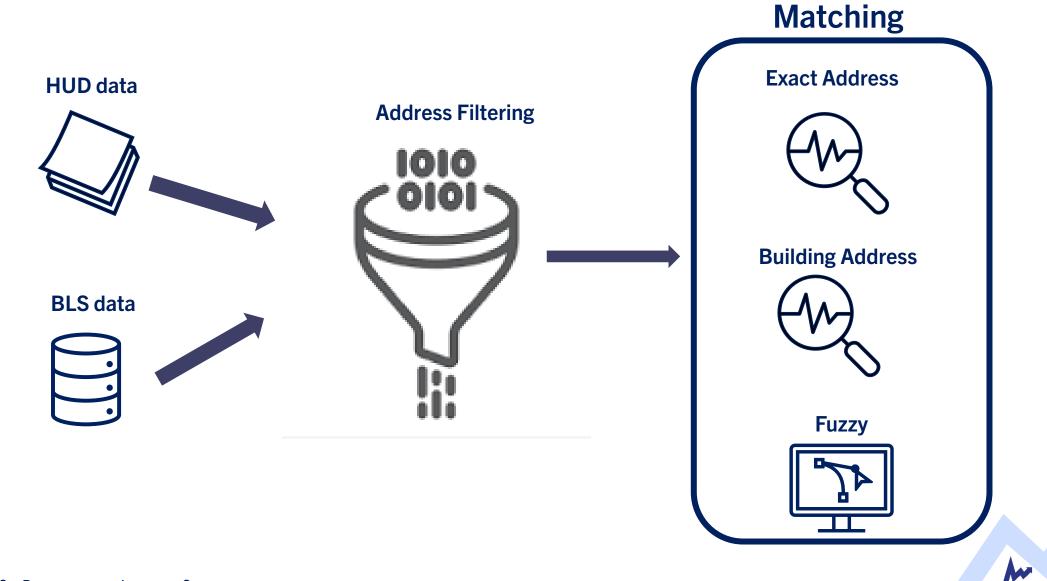


## **Address Matching Methodology**

- Rule Based (Current approach)
  - Deterministic
  - Binary (match or non-match)
- Fuzzy Matching
  - ▶ Probabilistic
  - Continuous (probability of match)



## **Project Flow**



В

## **Address Matching Challenges**

| Challenge                   | Example 1                                       | Example 2                                         |
|-----------------------------|-------------------------------------------------|---------------------------------------------------|
| Null Values                 | NA                                              | NaN                                               |
| Missing Values / Imputation | Imputed from another column (zip, state)        | Find correct data using data linkage (zip, state) |
| Punctuation                 | Dashes (–)                                      | Numbers                                           |
| Size                        | Small "ground truth" data set                   | Millions of a rows, tens of columns               |
| Human Error / Variance      | Competing Apt numbers                           | Regional language differences                     |
| Matching prioritization     | State vs Zip vs Street<br>address vs Apt number | Apt number exists but is missing                  |
| Matching Threshold          | Exact Matching                                  | Fuzzy Matching                                    |



## **Project Methodology**

Current literature that suggests a 90% matching is possible
Used linkage data not available to the CPI Housing Team
Used linkage data containing PII
More relaxed definition of "exact" address matching



## **Project Outcomes**

- The Python approach replicated (could not significantly improve) the existing SAS approach already in use by the CPI Housing Team.
- The requirement for an exact address match limits the coverage available with the HUD data



## Consumer Expenditure Diary Autocoder

#### Melissa Pollock

Economist

**BLS Office of Prices & Living Conditions** 

Division of Consumer Expenditure Surveys



### **Consumer Expenditure Surveys Quick Facts**



The surveys are the only federal government data collection effort to obtain information on the complete range of consumers' expenditures, income, and demographic characteristics, directly from consumers.



The **Interview** survey collects detailed data on major and/or recurring expenditures for periods of 3 months or longer; the **Diary** survey collects records for smaller, more frequently purchased items. Both include household characteristics questions to record demographic information.



National Processing Center (NPC)

Data are collected by Census for BLS: **Interview** expenditures via computer assisted personal interview (CAPI) instrument, **Diary** via respondent in a selfadministered diary.



CE data are used by the **Consumer Price Index** to weight its price indexes, inform the study of population segments, and are inputs to other governmental agency statistics and private sector organizations.



### The Diary Survey

#### **ILLUSTRATIVE EXAMPLE**

| <b>Clothing, Shoes, Jewelry, and Accessories</b> |             |    |                  |                             |              |                |                              |                                                |
|--------------------------------------------------|-------------|----|------------------|-----------------------------|--------------|----------------|------------------------------|------------------------------------------------|
| What did you buy or pay for?                     | Co<br>witho |    | Child<br>Under 2 | <b>as th</b><br>Boy<br>2-15 | Girl<br>2-15 | em f           | Or:<br>Woman<br>16 &<br>over | Name of<br>Store or Website<br>where purchased |
| dress shirts                                     | 75          | 00 | 1                | 2                           | 3            | 4              | <sup>5</sup> X               | Dillards.com                                   |
| running shoes                                    | 69          | 00 | 1                | 2                           | 3            | 4              | <sup>5</sup> X               |                                                |
| wallet                                           | 29          | 00 | 1                | 2                           | 3            | <sup>4</sup> X | 5                            | ↓                                              |
| baseball cap                                     | 14          | 99 | 1                | <sup>2</sup> X              | 3            | 4              | 5                            | Target                                         |
| ыь                                               | 3           | 50 | 1<br>X           | 2                           | 3            | 4              | 5                            | Sweet Dreams<br>boutique                       |
| necklace                                         | 250         | 00 | 1                | 2                           | 3            | 4              | <sup>5</sup> X               | Olde Towne jewelry                             |
| non-prescription sunglasses                      | 59          | 00 | 1                | 2                           | 3            | 4              | <sup>5</sup> X               | Walmart.com                                    |
| child's costume (returned for refund)            | - 15        | 00 | 1<br><b>X</b>    | 2                           | 3            | 4              | 5                            | Partysupply.com                                |

Daily expenses are **recorded directly by the respondent** over two consecutive one-week periods

#### Four expenditure sections:

- Clothing, shoes, jewelry, accessories
- Food & drinks for home consumption
- Meals outside the home
- All other expenditures



### Item Coding Example



All are grouped together in **SLACKS Item code 410060** 



### Item Coding Prior to 2024

| WHAT     | <b>30K Diary records</b> for each month of data manually keyed in and assigned an item code |
|----------|---------------------------------------------------------------------------------------------|
| HOW LONG | 8 weeks of keying and coding for each month of Diary data                                   |
| ACCURACY | <b>11.8%</b> of NPC-coded records are misclassifications                                    |



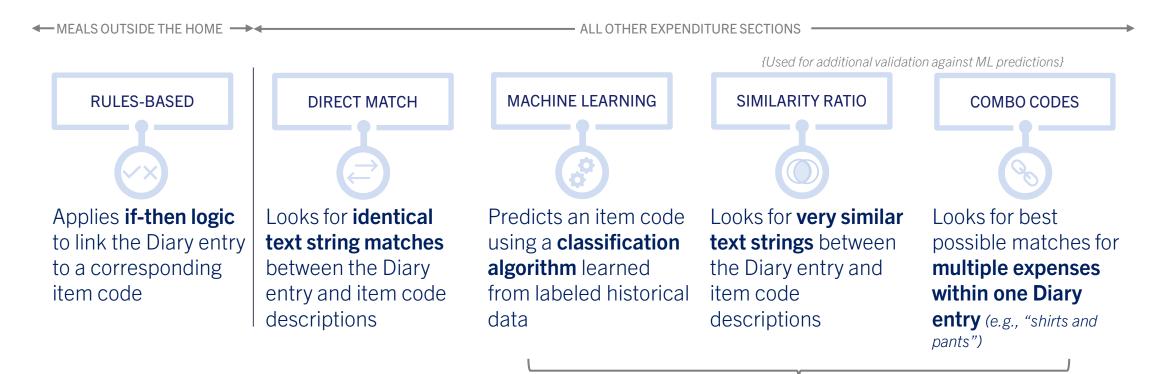
### Opportunity

- **Reduce processing time**: speed up item code assignment
- Uphold data accuracy: reduce (or, at least, do not increase) the volume of item code misclassifications
- **Cost savings:** reduce the cost of Diary digitization



### **CE Diary Autocoder Overview**

The CE Diary Autocoder is not a single model but, instead, a series of approaches to arrive at an item code assignment.



An estimated 10-20% of this subset will have low probability of a correct prediction and be **flagged for human review** 



#### Method Details and Results

#### **DIRECT MATCH**



- Multi-step processing of the incoming Diary entry
- Compare against a maintained robust dictionary
- ~50% of records can be direct matched

#### MACHINE LEARNING



- Random Forest model built for each of the 4 record types using 2 years of training data
- Accuracy, Precision, Recall, and F1 used to evaluate model performance
- Low confidence predictions are flagged for human review

#### SIMILARITY RATIO



- For all records with an ML prediction, similarity ratio is calculated for the processed Diary entry and the predicted item code description
- Formula: <u>2 \* number of matching characters</u> Total number of characters

Accuracy same as Census coding Estimated 73% reduction in processing time



## **SOII Autocoder**

#### **Daniel Todd**

Data Scientist

BLS Office of Compensation and Working Conditions

Compensation Research and Program Development Group



## Survey of Occupational Injuries and Illnesses (SOII)

- Establishment survey
- >200k injuries reported/year
- Information such as:
  - Job title
  - Source of injury
  - Part injured
  - Etc.



### **SOII Case Coding Example**

#### Example Narrative Job title: Sanitation worker

What was the employee doing just before the incident? Mopping floor in gym

What happened? slipped on wet floor and fell

What part of the body was affected? fractured right arm

What object directly harmed the employee? wet floor



#### Codes Assigned

Occupation: 37-2011 (Janitor) Nature: 111 (Fracture) Part: 420 (Arm) Event: 422 (Fall, slipping) Source: 6620 (Floor)



### Why Computer-Assisted Coding/Autocoder?

It started more than 12 years ago when all codes were assigned manually.

Manual coding was time and resource intensive.

People weren't coding consistently across regions.

Two experts coding exact same narratives ~70% agreement

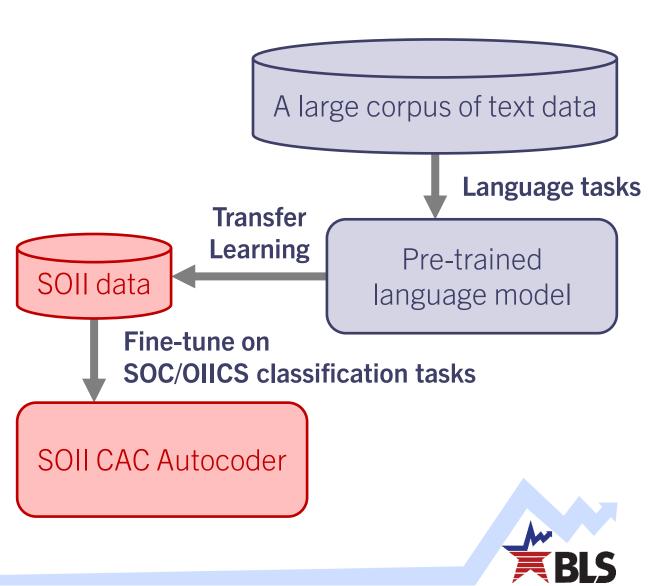
Can computers help?



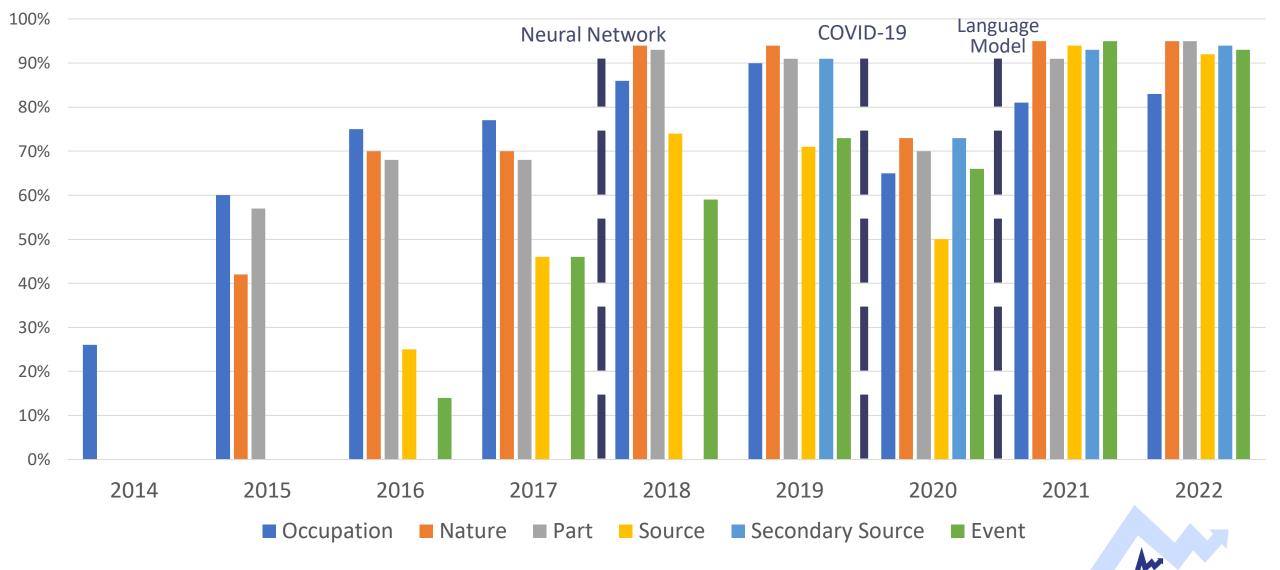
## Current SOII Autocoder: Language Model

### Timeline:

- 2014: Logistic Regression/Bag of Words
- 2018-2020: LSTM model
- 2021: Transfer learning using transformer model (like Chat-GPT)



#### Percent of SOII codes automatically assigned by survey year



### Autocoding Process Safeguards

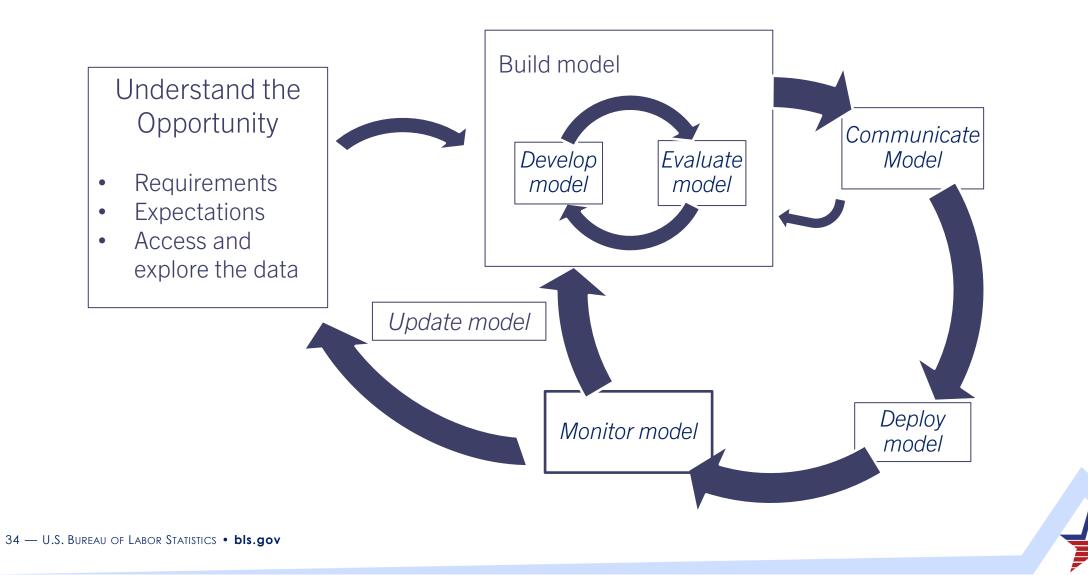
- Human in the loop: All predictions made are reviewed by human staff.
- Performance measurement using gold standard data: Prior to deployment, models are evaluated against gold standard dataset labelled by subject matter experts







### Model as Product: Phases of Development



## **Contact Information**

#### **Erin Boon**

Data Scientist BLS Office of Survey Methods Research Data Science Research Center

#### Boon.Erin@bls.gov

#### Ayme Tomson

Data Scientist BLS Office of Prices & Living Conditions Division of Consumer Prices and Price Indexes

Tomson.Ayme@bls.gov

#### Melissa Pollock

Economist BLS Office of Prices & Living Conditions Division of Consumer Expenditure Surveys

Pollock.Melissa@bls.gov

#### **Daniel Todd**

Data Scientist BLS Office of Compensation and Working Conditions Compensation Research and Program Development Group

Todd.Daniel@bls.gov

