

Video Interviewing: An Overview

Andrew L. Hupp

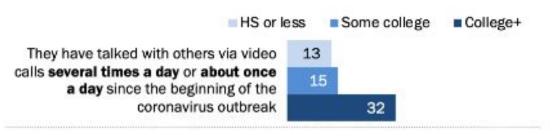
2024 Federal Computer Assisted Survey Information Collection (FedCASIC) Workshops Virtual, April 17, 2024

Vocabulary

- Video conferencing => video communication, video calls, video meetings
- No four letter acronyms with a "C" for Computer assisted"
 - All video communication involves computers
 - which *mediates* the communication more than *assists* an interviewer
- Distinguish live video interviews from a mode in which recordings of interviewers reading questions are embedded in online questionnaires
- Use "Live Video interviews" or just "video interviews" to mean live, two-way communication
 - distinguish from in-person interviews
 - both are face-to-face

Video usage

 81% of U.S. adults have ever used video to talk with others Technology has been a lifeline for some during the coronavirus outbreak ...


% of U.S. adults who ...

say they have ever* talked with others via video calls since the beginning of the coronavirus outbreak in February 2020

 Those with more education are likely to make frequent video calls Adults with a bachelor's, advanced degree more likely than others to make daily video calls, use tech in new ways, consider internet essential amid COVID-19

% of U.S. adults who say ...

(Pew Research Center, 2021)

When face-to-face data collection is "required," video-mediated interviewing...

- Appears to be an effective alternative (it's also "face-to-face")
- Allows interviewers to help with difficult response tasks
 - e.g., cognitive assessment
- Enables collecting data from members of remote populations, or those with safety (e.g., dangerous public health conditions or high crime neighborhoods) or privacy concerns
- It could reduce (or eliminate) interviewer travel costs
- Promotes completion (Hupp et al., 2021) and reduces straightlining compared to self-administration (Conrad et al., 2023)
- Promotes same levels of rapport between respondent and interviewer observed in person (Sun et al., 2021)

Respondent Considerations

- Not all (potential) respondents have access to video communication, potentially leading to coverage error (Schober et al., 2020)
 - Need a stable internet connection
 - Need a device with a working camera and microphone
 - R must be comfortable/skilled (enough) with using video to agree to participate; platform must be easy to use
 - Must be willing to use video (Schober et al., 2023)
- Access may be improved in some cases
 - Those who need sensory assistance can turn up the volume (can't do this in person) or read the interviewer's lips (can't do this in a phone interview)

Recent Production Studies

United Kingdom & Europe

- 1958 National Child Development Study (NCDS)
- 1970 British Cohort Study (BCS70)
- English Longitudinal Study of Ageing (ELSA)
- European Social Survey (ESS) 30+ European nations
- Health Survey for England
- National Survey of Sexual Attitudes and Lifestyles (NatSal)

Australia

Survey of Health and Wellbeing (SHWB)

United States

- American National Election Studies (ANES)
- Medical Expenditure Panel Survey (MEPS)
- National Study of Mental Health (NSMH)

Interest

- Survey Futures Research Strand3 (investigating video)
 - https://www.iser.essex.ac.uk/resea rch/projects/survey-futures
- NCRM SDC-Net video interviewing special interest group https://www.ncrm.ac.uk/research/S
 DC-Net/
- mda special issue on video interviewing
- 2022 AAPOR webinar: Video Survey Interviews: Recruiting, Data Quality, and Respondent Experience

Sample/Recruitment

- Invitation in another mode, e.g., postal mail, email, text message, in-person or telephone
- Unsolicited contact, e.g., ABS, unlikely to be productive (Hupp et al., 2021)
- Video interviews well suited for studies that collect data from respondents on multiple occasions (e.g., Current Population Survey, American National Election Studies, etc.)
 - sample members trust the organization
 - o possible to instruct R on use of video and to check connection in earlier, in-person visit

Scheduling Options

Cold call

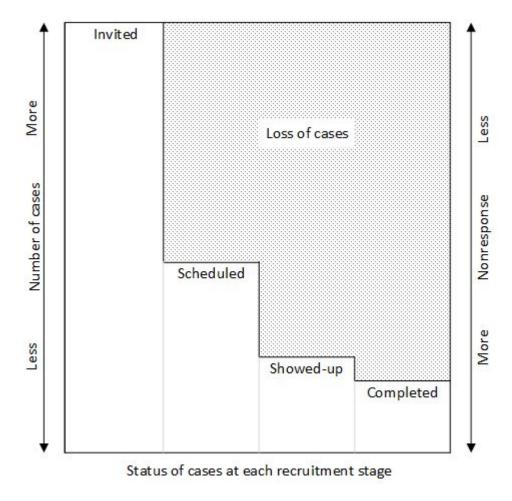
- Challenges assembling a frame with the necessary information (e.g., usernames, email addresses, FaceTime phone numbers)
- Seems unlikely to be effective since most respondents probably unwilling to accept an incoming video call from an unknown person

On-demand

- Have interviewers available (possibly during designated times) when R wishes to be interviewed
- Feasible but inefficient (DeBell et al., 2022, Guggenheim et al., 2021)

By appointment

- Interviewer schedules during previous interview
- Respondent self-schedules (e.g, see Conrad et al., 2023 for an example, and McGonagle and Sastry, 2021) for a discussion of self-scheduling telephone interviews)



Appointment Show Rate

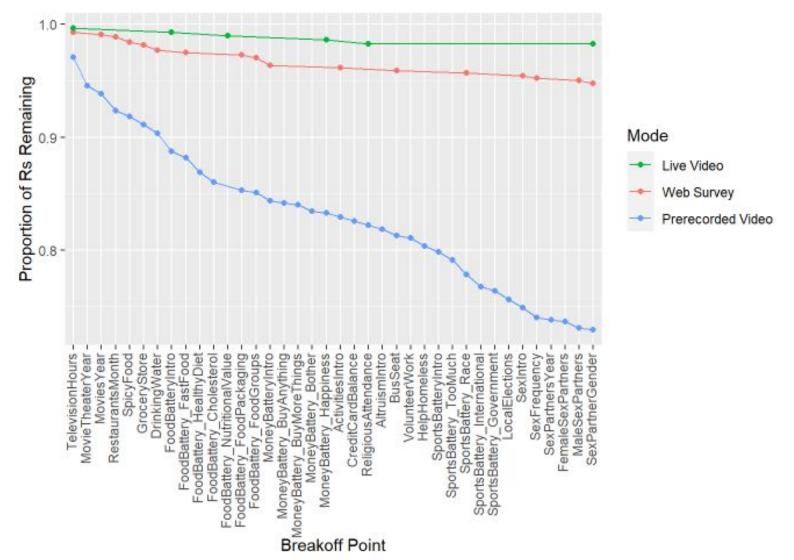
- Little research on extent to which survey appointments are kept
- Extensive research on medical appointments
 - Rates of broken appointments increases when more effort is required by the patient to keep an appointment (e.g., greater distance to the clinic, lack of transportation) Dantas et al., 2018; Deyo & Inui, 1980
 - Appointments for telehealth visits are kept at a substantially higher rate than in-office visits (Alkilany, Tarabachi, and Hong, 2021; Drerup et al., 2021)
 - Appointments are kept at a higher rate when patients are reminded (Almong et al., 2003; Opon et al., 2020)
- Presumably the show rate for survey interviews are affected in similar ways

Live Video Nonresponse

Live Video Appointment Show Rate

Sample Source	Invited	Scheduled an appointment
Total	5,783	593 (10.3%)
Opt-in Web	5,500	310 (5.6%)
Opt-in Clinical	283	283 (100%)

Sample Source	Scheduled an appointment	Showed up for appointment	Didn't show-up for appointment
Total	593	309 (52.1%)	284 (47.9%)
Opt-in Web	310	91 (29.4%)	219 (70.6%)
Opt-in Clinical	283	218 (77.0%)	65 (23.0%)



Live Video completion rate

Sample Source	Scheduled an appointment	Showed up for appointment	Didn't show-up for appointment
Total	309	23 (7.4%)	286 (92.6%)
Opt-in Web	91	16 (17.6%)	75 (82.4%)
Opt-in Clinical	218	7 (3.2%)	211 (96.8%)

Breakoffs

Hupp et al., 2021

Data Quality

- Two published studies (that we are aware of) have examined data quality in live video interviews
 - Lab study: Endres, Hillygus, DeBell & Iyengar (2022) compared data quality between
 - Live video, web, and in-person
 - Field study: Conrad, Schober, Hupp, West, Larsen, Ong & Wang (2023) compared data quality between
 - Live video, web, and prerecorded video

Effect of Live Video Interviewing on Data Quality

- Most satisficing behaviours are less common in live video than in a textual web survey (rounding is the exception, much like in in-person interviewing)
- Less disclosure of sensitive information in Live video than Web survey

Data Quality Measure	Endres et al. (2022)	Conrad et al. (2023)
Length of open responses	Live video > Web	
Straightlining	Live video (marginally) < Web	Live Video < Web
Missing data	Live video < Web	Live Video < Web
Rounding		Live Video > Web
Disclosure	Live video < Web	Live video < Web

Similar Data Quality in Live Video and In-Person Interviews

- Endres, et al. (2022)
 - No differences between in-person and live video on any questions
- Conrad et al. (2023) findings analogous to published comparisons of in-person and web:
 - Straightlining: less prevalent in in-person interviews than web (Heerwegh & Loosveldt, 2008)
 - Disclosing sensitive information: more socially desirable responding in in-person interview than web surveys (Heerwegh, 2007)
 - Rounding: greater in in-person interviews than web surveys (Liu & Wang, 2015); attributed to greater time pressure in in-person interviews than web

Interviewer Effects

- West, et al. (2022) examined this and report that interviewer variance (IIC) was low overall, with all IICs less than 0.02
- Not possible to compare these IICs to those for in-person interviews (none were conducted in that study), but suggests that live video interviewers introduced no more variance than is typical in in-person interviews

Discussion

- Is there a place for video in official government surveys?
 - A lot of potential, but still a lot of unknowns
 - One mode among > 1 mode
 - Choice in a single interview (more likely to succeed than only video)
 - Second (or later) interview in longitudinal survey or study with multiple interviews
- Scheduling is currently critical
 - The additional effort (i.e., scheduling and showing up) may be a deterrent for many to participate
- Cost savings are theoretical at this point

Thank You!

ahupp@umich.edu

References (1)

- Alkilany, R., Tarabichi, Y., & Hong, R. (2021). elemedicine Visits During COVID-19 Improved Clinic Show Rates. *JACR open rheumatology*, 4(2) 136-141. https://doi.org/10.1002/acr2.11372
- Almong, D. M., Devries, J. A., Borrelli, J. A., & Kopycka-Kedzierawski, D. T. (2003). The Reduction of Broken Appointment Rates Through an Automated Appointment Confirmation System. *Journal of Dental Education*, 67(9) 1016-1022.
 - https://doi.org/10.1002/j.0022-0337.2003.67.9.tb03684.x
- Conrad F. G., Schober M. F., Hupp A. L., West B. T., Larsen K. M., Ong A. R., & Wang T. (2023). Video in Survey Interviews: Effects on data quality and respondent experience. *methods, data, analyses, 17*(2) 135-170. https://doi.org/10.12758/mda.2022.13
- Dantas, L. F., Fleck, J. L., Cyrino Oliveira, F.L., & Hamacher, S. (2018). No-shows in appointment scheduling a systematic literature review. *Health Policy*, 122(4), 412 –421. https://doi.org/10.1016/j.healthpol.2018.02.002

References (2)

- DeBell, M., Amsbary, M., Brader, T., Brock, S., Good, C., Kamens J., Maisel, N., & Pinto, S. (2022).

 Methodology Report for the 2020 ANES Time Series Study. Palo Alto, CA and Ann Arbor, MI:

 Stanford University and the University of Michigan.

 <a href="https://electionstudies.org/wp-content/uploads/2022/08/anes_timeseries_2020_methodology_nethodology_
- Deyo, R. A., & Inui, T. S. (1980). Dropouts and Broken Appointments. *Medical Care 18*(11), 1146-1157.
- Drerup, B., Espenschied, J., Wiederner, J., & Hamilton, L. (2021). Reduced No-show Rates and Sustained Patient Satisfaction of Telehealth During the COVID-19 Pandemic. *PTelemedicine* and e-Health, 27(12) 1409–1415. https://doi.org/10.1089/tmj.2021.0002
- Endres, K., Hillygus, D. S., DeBell, M., & Iyengar, S. (2022). A randomized experiment evaluating survey mode effects for video interviewing. *Political Science Research and Methods*, *11*(1) 144–159. https://doi.org/10.1017/psrm.2022.30

References (3)

- Guggenheim, L., Maisel, N., Howell, D., Amsbary, M., Brader, T., DeBell, M., Good, C., & Hillygus, D. S. (2021). Live Video Interviewing in the 2020 ANES Time Series Study. Presented at the 76th Annual Conference of the American Association for Public Opinion Research, Virtual.
- Heerwegh, D. (2007). Mode differences between face-to-face and web surveys: An experimental investigation of data quality and social desirability. *International Journal of Public Opinion Research*, 21(1), 111 –121. https://doi.org/10.1093/ijpor/edn054
- Heerwegh, D., & Loosveldt, G. (2008). Face-to-face versus web surveying in a high-internet-coverage population: Differences in response quality. *Public Opinion Quarterly*, 72(5), 836 –846. https://doi.org/10.1093/poq/nfn045
- Hupp A.L., Larsen K.M., Conrad F.G., Ong, A.R., Schober M.F., West B.T. & Wang, T. (2021).

 Recruitment and Participation in Video Interviews. Presented at the 9th Conference of the European Survey Research Association, Virtual.
- Liu, M., & Wang, Y. (2015). Data collection mode effect on feeling thermometer questions: A comparison of face-to-face and Web surveys. *Computers in Human Behavior*, 48, 212–218. https://doi.org/https://doi.org/10.1016/j.chb.2015.01.057

References (4)

- McGonagle, K., & Sastry, N., (2021). "An Experimental Evaluation of an Online Interview Scheduler: Effects on Fieldwork Outcomes." *Journal of Survey Statistics and Methodology*, *9*(3), 412–428. https://doi.org/10.1093/jssam/smaa031
- Opon, S. O., Tenambergen, W. M., & Njoroge, K. M. (2020). The effect of patient reminders in reducing missed appointment in medical settings: a systematic review. *PAMJ One Health*, 2(9), 1–10. https://doi.org/10.11604/pamj-oh.2020.2.9.21839
- Pew Research Center, September 2021, "The Internet and the Pandemic"
- Schober, M.F., Okon, S., Conrad, F. G., Hupp, A.L., Ong, A.R., & Larsen, K.M. (2023). Predictors of Willingness to Participate in Survey Interviews Conducted by Live Video. *Technology, Mind, and Behavior, 4*(2). https://doi.org/10.1037/tmb0000100
- Schober, M.F., Conrad, F.G., Hupp, A. L., Larsen, K.M., Ong, A.R., & West, B.T. (2020). Design Considerations for Live Video Survey Interviews. *Survey Practice*, *13*(1). https://doi.org/10.29115/SP-2020-0014

References (5)

Sun, H., Conrad, F. G., & Kreuter, F. (2021). The relationship between interviewer-respondent rapport and data quality. *Journal of Survey Statistics and Methodology, 9*(3), 429-448. https://doi.org/10.1093/jssam/smz043

West, B.T., Ong, A.R., Conrad, F. G., Schober, M.F., Larsen, K.M., & Hupp, A.L. (2022). Interviewer Effects in Live Video and Prerecorded Video Interviewing. *Journal of Survey Statistics and Methodology*, 10(2), 317-336. https://doi.org/10.1093/jssam/smab040

