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ABSTRACT

For most data releases especially those from censuses, the U. S. Bureau of the Census has either
released data at high levels of aggregation or applied a data disclosure avoidance procedure such as
data swapping or cell suppression before preparing micro-data or tables for release. In this paper, we
present a general statistical characterization of the goal of a statistical agency in releasing
confidential data subject to the application of disclosure avoidance procedures. We use this
characterization to provide a framework for the study of data disclosure avoidance procedures for
categorical variables.

Consider a sample of observations op variables, which may be discrete or continuous. Our
general characterization is in terms of the smoothing of a multi-dimensional empirical distribution
function (an ordered version of the data), and sampling from it using bootstrap-like selection. Both
the smoothing and the sampling introduce alterations to the data and thus a bootstrap sample will
not necessarily be the same as the original sample -- this works to preserve the confidentiality of
individuals providing the original data. Two obvious questions are: How well confidentiality is
preserved by such a process? Have the smoothing and sampling disguised fundamental relationships
among thep variables of interest to others who will work only with the altered data? Rubin (1993)
has provided a closely related characterization and approach based on multiple imputation.

We explain some of these ideas in greater detail in the context of categorical random variables and
compare them to methods in current use for data disclosure avoidance such as data swapping and
cell suppression. We also relate this approach the data disclosure avoidance methods to statistical
analysis associated with the use of loglinear models for cross-classified categorical data.
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1. INTRODUCTION

Disclosure avoidance methodology has developed over the past 20 years as a major area of
government statisticeesearch and activity. The advances are impressive (e.g. see the progress
chronicled in Subcommittee on Disclosure-Avoidance Techniques, 1994, especially when compared
with the methodology described as of Subcommittee on Disclosure-Avoidance Techniques, 1978),
but all too often they appear to be unlinked to the analytical uses to which most census and survey
data are put and to the evolving methods of analysis. During this same 20 year period there have also



been major advances in statistical methodology and theory. A theme of this paper is that many of
these statistical tools that come from these latter developments have relevance to the area of
disclosure avoidance methodology. For a number of reasons situations involving categorical data
in the form of a contingency table offer an excellent venue for such consideration.

In this paper we:

® Review some current statistical ideas in use for data disclosure avoidance for categorical
variables.

® Present a new statistical framework for data release.

®Relate these ideas and approaches to "traditional” statistical methodology associated with
loglinear models for cross-classified categorical data.

Before doing so, we outline a framework in which the problem of data-disclosure avoidance
methodology can be viewed. Consider four different parties:

® TheAgencyor data collector.

® TheRespondentsr data providers.

® An Intruder who wants to learn about one or more data providers via the data to be
released by the agency.

® Usersor secondary analysts of the agency data.

The question of interest to us is: What data can the agency release for analysis by the users while
protecting the respondents from the intruder (i.e., preserving their confidential)? The practical way
in which this question has been answered is through the application of some disclosure limitation
method that the agency hopes achieves the desired goals.

In the next section we review some of the specific methods for disclosure avoidance that have been
proposed in the literature, and that fit under the broad rubric of "matrix masking." In particular we
describe two specific methods for "matrix masking" when all of the variables are categorical -- cell
suppression and data swapping. Then, in Section 3, we explain how we view these methods in the
context of the users' analytical goals. In Section 4, we suggest a general strategy for disclosure
limitation that attends to the proposed goals in a non-standard fashion, and we relate the strategy to
some modern approaches from the statistical methodology literature. In Section 5, we describe in
further detail how we propose implementing the strategy in the context of contingency table
problems. We end by outlined research that would put the general strategy suggested on a firm
theoretical foundation.

There are a number of excellent papers that attempt to bridge the gap between the literature on
disclosure avoidance and more general statistical methodology, beginning with the pioneering work
of Duncan and Lambert (1986, 1989), and continuing with Fuller (1993), Lambert (1993), Rubin
(1993) and other contributors to a special issue ofXtarnal of Official StatisticsThis paper

builds, both directly and indirectly on a number of these earlier efforts.

The general strategy proposed here has appeared in other papers in the past, e.g. see Liew, et. al.
(1985) and Rubin (1993), and Fienberg (1994b), and Heer (1993) has suggested a bootstrap method
for contingency tables which is related but different from our proposals in Section 5. To our
knowledge, no previous authors have integrated these ideas with both the full literature on loglinear



model methods and that on disclosure limitation.
2. MATRIX MASKING FOR MICRO-DATA

Duncan and Pearson (1991) give an excellent description of approaches to the masking of microdata.
Suppose thaX is ann by p matrix representing the microdata foiindividuals or cases op
variables or attributes. Then matrix masking of the microdatafipgovides the user with the
transformed filZ=AXB+C in lieu of X. The matrixA transforms case® transforms variables, and

C blurs the entries AAXB. The use o in lieu of X includes several well-known approaches as
special cases:

1. Release a subset or sample of the data (delete ro%ys of
2. Include simulated data (add rows<p

3. Add random perturbations X

4. Exclude selected attributes (delete columns)of

5. Release the variance-covariance matrix (ch8oseX").

Examples of transformations Xothat are not of the foriz include swapping (exchanging rows for

a subset of the columns X)) and the coarsening, grouping or truncation of attributes. But Cox
(1994) explicitly denotes these methods, especially swapping (see below and the Appendix) to the
matrix masking approach.

Clearly the use o needs some information abo&, 8, C), but the release of full information is

not allowed. Determining what information can be released for a given chokeB)f@) and the

choice ofZ itself are both active areas of research. For further details see Cox (1994) and Fienberg
(19944a) as well as the specific work of Fuller (1993) and Sullivan (1989).

A special case involving the deletion of rows is the method of cell suppression. Suppose we are
interested in summarizing a set of data in the form of a cross-classification of counts or nonnegative
aggregates. Deleting or suppressing a cell value is equivalent to the deletion of thosexréavs of
which the entries in columns corresponding to the cross-classifying variables assume the values that
specify the cell in question. Cell suppression is widely used for data on establishments because
counts of "1" or "2" may uniquely identify a respondent.

Current practice at the U. S. Census Bureau is to suppress any celkwherdewer respondents
make up that cell's value. Such cells are referred poiasiry suppressions. The bureau keeps the
value ofk as well as the method used for selection of cells confidential.

Because reported cross-classifications usually include the corresponding marginal totals, suppressing
a single cell produces multiple masks for the same matrix and, taken together, these masks do not
disguise the data -- the value of a deleted cell in a two-way array can be retrieved from the other
entries in the same row or column combined with the corresponding marginal total. Thus methods
for cell suppression in cross-classifications also choose other cell values for suppression; these are
often referred to asomplementarguppressions. Determining "desirable" patterns of complementary
suppressions is an active area of research, especially for multi-way cross-classifications (e.g., see
Greenberg and Zayatz, 1992; Cox, 1980, 1995; and Carvalho, et al., 1994, Robertson, 1993).

In Figure 1 we depict an example of cell suppression in a two-way contingency table with entries



{n;} involving a single primary suppression, in the (1,2) cell, and three complementary suppressions.
It is important to note for the present context that the basic approach is one involving margin
preservation, i.e., in the two-way table the method for suppression preserves both sets of one-
dimensional marginal totalsp{} and {n; }, by design. In higher dimensions cell suppression also
preserves marginal totals but possibly those of highest order.
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Figure 1: An lllustration of Cell Suppression in a Two-way Contingency Table with
Entries {n;}. The primary suppression occurs in cell (1,2) and the complementary
suppressions in cells (1,3), (3,2), and (3,3).

In 1978, Dalenius and Reiss proposed a methodsvi@ppingobservations while preserving
marginal totals. In the Appendix we provide some details on their proposal and two variations on
the same theme, including the one used for disclosure limitation in micro-data files from the 1990
U. S. decennial census. Again this we can view data swapping as a special case of matrix masking
at least in its simplest forms as noted above.

In Figure 2 we present an illustration of data swapping in a three-way contingency table, in which
an observation for the (1,2,1) cell is moved to the other layer, i.e. into the (1,2,2) cell, and in return
an observation from the (3,1,2) cell is moving to the first layer, i.e., to the (3,1,1) cell. Thus in
moving from the original table (on the left) to the table with the swapped pair of observations (on
the right) we end up preserving the two-way totafg, § and the one-way totalspf, }. Data
swapping involves the repeated application of such movements of pairs of observations.
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Figure 2: An lllustration of Data Swapping in a Three-way Contingency Table with
entries f;}. The original table is on the left and the table with observations from the
(1,2,1) and (3,1,2) cells, swapped between layers is on the right.

Both the method of cell suppression and the method of data swapping preserve marginal totals in
contingency tables. But this is also a property associated with loglinear model methods. What is
interesting is that despite the fact that cell suppression and data swapping have been presented in the
same sessions in various forums (e.g. see Cox and Sande, 1978 and Dalenius and Reiss, 1978 and
the discussion of the two papers by Zalkind, 1978), previous authors have failed to note this clear
relationship between these methods as well as to methods in the contingency table literature.

3. PERSPECTIVE ON DATA RELEASE AND DISCLOSURE LIMITATIONS
3.1 The Users' Perspective

Typical users of government statistical data are interested in relationships and causal connections
for policy choices. They use statistical models to describe such relationships. Often their view of
"error" is akin to including an error component in an analytical model (e.g., such as a regression error

term & inthe equatiory=5,+3,X+s . Otherwise, the typical user has limited ways to address the
multiplicity of information on uncertainty and error coming from the statistical agency that produces
the data.

The typical user is interested in analytical models and especially ones with causal implications. Thus
we can think of the users' objectives as involving the linking of response variables,



Y, and explanatory variableX, through a statistical model that attempts to represent some
underlying substantivehenomenon. Unfortunately we rarely get to observe or me¥samdX

directly. What is produced through a census or a survey questionnaire is often a related but fallible
measure of the quantities of real interest. These we Yalagid X" .

The user is interested in models for the conditional distributidhgsten X and thus we can take
as the user's objective the estimation of a multivariate cumulative distribution function (c.d.f.), of

the forms F,1 X oan X6 for various values Xf or at least characteristics of such a multivariate

c.d.f. Here the parameter  might be a population mean or varjance;? or , or a parameter(s) in
a statistical model such as a regression coefficient, , likely multidimensional in form. While there
has been some interest in the survey literature in the problem of estimation distribution functions
(e.g., see Rao, 1994, and the references contained therein), although this literature has been
concerned primarily with univariatgé. In the ensuring discussion we ignore those sources of
measurement error iK beyond those forms captured in the agency's own evaluation and data
preparation activities.

Estimation of amultivariate c.d.f. is a general statistical problem that includes a number of
interesting special cases. For example, suppose that all of the variables in the user's model and in
the data set are categorical in nature, as is often the case in censal and survey settings. Then the c.d.f.
is essentially equivalent to the table of conditional probabilitiesy(fyivenX) that correspond to

the cross-classification of the variables in contingency table form (c.f., Bishop, Fienberg, and
Holland, 1975). We refer to this special case again in the Section 5 and provide an extended set of
references and notes on this special case.

3.2 The Current Agency Approach

At the risk of oversimplification, we can characterize the standard approach to data collection,
processing and release roughly as follows:

® Collect and "clean up" the raw data. This includes editing, matching and all other
preliminary processing.

® Protect the data by applying some form of data disclosure avoidance methodology.

® Then release the resulting data in one or perhaps both of the following forms:

- as set of marginal tables for some larger cross-classification (i.e., selected marginal
cross-classification -- see the discussion in Sections 2 and 5 regarding the relationship
between marginal tables and loglinear models).

- as micro-data files for the variables related to the ones of user im¥érXs}. (

e Estimated directly using a sample-based quantity,

In effect, the user then follows the agency's lead and estimates the c.d.f., directly from the released
data using the "empirical" c.d.f. (suitably weighted to take into account the impact of the survey
design),F yix- o+ Or possibly a more elaborate and smoother parametric estimate based on the

estimated parameter, i. & X' 5"



3.3 Shortcomings of The Current Approach

While this approach might make considerable sense for some descriptive statistical problems, the

fact thatF,1 X and—',1 x o rarely reflect fully aspects of sampling design error that many believe to

be important, such as clustering, and they almost never reflect the other sources of error listed above
that typically dwarf sampling error. Further, given the relatively primitive statistical state of
disclosure avoidance methodology, the user may still be able to "identify" individuals in the released
data. One way to overcome these shortcomings is to continue to address the various components of
error and to separately improve the approach to data disclosure avoidance. Alternatively, we can
attempt to reconceptualize the data reporting problem in a new and integrated fashion.

4. ANEW STRATEGY AND FRAMEWORK

In this section, we propose a new approach to the release of survey data. We begin with the goals
of the users and ask how agencies should organize the data of interest in order to provide data
released that fit with the user goals.

4.1. Generating "Pseudo” Micro-Data Files for Public Use

Our new approach is cast in terms of the release of a public-use micro-data file that is intended to
support analyses for the conditional distributio?YofiivenX . The first step in our prescription is:

1. Combine the census or survey data that the agency would normally have chosen to release,
in the form F v X andr Y X5 with formal statistical information on error, e.g., form

editing, matching, nonresponse, etc. and apply some form of parametric or semi-parametric
technique to estimatE)1 cand F)1 x oY F,1 X anan x5 respectively, where is anew
estimate of6 cast in terms of the distribution of the variables of actual user inteaadt,
X.

For non-parametric estimation 5(1 « We can either think in terms of a classical statistical approach

using some type of kernel density estimator or a related type of "smooth" estimate (e.g., see Scott,
1992), or a Bayesian approach based on the mixture of Dirichlet processes (e.g., see West, Miiller,
and Escobar, 1994; Gelfand and Mukhopadhyay, 1995) or the use of Polya trees (Lavine, 1992).
These tools, however, have been used primarily in low-dimensional problems and thus there needs
to be additional research to study their adaptation to the high-dimensional censal and survey
problems which are the focus of this paper. Even if these methods are not especially efficient for
statistical estimation purposes, they may serve the needs of data disclosure avoidance which are
crucial to the strategy outlined here.

In what ways does this new smoothed estimatEm( differ from the one that is explicit or implicit

in the current approach? We offer three examples. First, consider the release of census data. In both
the US and Canada, there has been extensive documentation of the extent of census undercoverage
and how the resulting undercount is distributed across groups in the population and across
geographic areas. Failure to correct for such undercoverage in the release of data of the form leads
to biased estimates of the true quantity of interle'ﬁtx. Second, by smoothing data to reflect

regression-like relationships we can typically achieve improved estimates with much lower



variances, although at the price of some potential bias. Finally, by incorporating agency information
on components of error (which tends to increase variances) into the statistical estimation process,
we produce a new smoothed estimatqufX.

The next steps in our prescription are:

2. Instead of releasing the c.d.f. estimate din step 1 above, the agency now "samples" from

it to create a "pseudo” micro-data file which we Iabefaﬁ X andF Mxb - We use the
overbar to indicate a sample from the smoothed c.d.f.'s, in accord with our earlier notation
for the empirical c.d.f., which corresponds to a sample and the hat to indicate that we are

sampling from the smoothed or estimated c.d.f.).

3. The agency repeats the process of "sampling" and then releases the resulting replicate
"pseudo” micro-data files.

4.2 Features of Pseudo Micro-Data File

The "pseudo” micro-data files created in he approach outlined above have several interesting

features. First, if we think of vi X ang vxs as consisting of a set of released records for
individuals, then these "individuals" do not necessarily correspond to any of those individuals in the
original sample survey. This enhances the public notion of the protection of confidentiality of
responses even if an intruder might still be able to indirectly make inferences about individuals in

the original sample.

This point is especially important from the perspective of data disclosure avoidance. Since the
individuals in the pseudo micro-data file are not necessarily those from the original sample, we have
at least in part addressed confidentiality concerns. After all, we no longer even appear to be releasing
data for any individual from the original sample. But this discussion of data disclosure avoidance
is somewhat illusory. It remains possible that individuals, whose valugsaadX are far from

those for the rest of the sample, may still in effect be regenerated through this complex statistical
estimation process and reemerge virtually intact in the pseudo micro-data file. Thus we would argue
that empirical checks on the effectiveness of data disclosure avoidance are still necessary and, in
particular, we would advocate examining the issue from the perspective of an intruder (e.g., see
Fienberg, Makov, and Sanil, 1994).

Second, there is close connection here with two recently developed statistical methods: (1) the
bootstrap (Efron, 1979, Efron and Tibshirani, 1993, Hall, 1992) which is a classical method
involving repeated sampling (with replacement) from an empirical distribution function; (2) multiple
imputation (Rubin, 1987, 1993) which is a Bayesian method for generating values that are sampled
from a posterior distribution. Our preference is to think about the estimation implicit in the approach
outlined here from a Bayesian point of view. Thus, in effect, we are proposing that agencies should
first estimate the empirical distribution function, generating the full posterior distributiﬁq of

or an’e and then sample from it using Rubin's multiple imputation approach. From this

perspective, the bootstrap can be viewed as a way to sample from something approximately akin to
the mean of the posterior distribution.



Third, the sample design for the released records need not be the same as that for original sample
survey. Thus, at least in principle, the agency could use simple random sample or even sampling
with replacement frorrf:,1 X ofﬂ1 Xt Rubin (1993) emphasizes this point without explaining
exactly how to determine what we might call the "equivalent” sample size for the released data files.
The heuristic idea is that there is only so much information available in the data and the resampling
process cannot increase this. To preserve the appropriate level of accuracy in the data we need to
have a bootstrap sample size that at least is conceptually equivalent to the "effective sample size"
of the complex sample design, thus reflecting a design effect. This notion is somewhat problematic,
however, as the "effective sample size" might well vary from one analytical setting to another!

But perhaps the most important feature of the approach is that users can now analyze pseudo micro-
data files to estimate specific quantities of interest,@.g.  using standard statistical methodology.

In essence the ideas is that we can use a standard statistical method such as regression analysis or
something more elaborate and thus will produce consistent estimates of the coefficients of interest.
What we cannot do, however, is use the usual estimates of standard errors that result from the
standard analysis tools. One of the lessons from both the bootstrap and multiple imputation is that
while we can estimaté using standard statistical methodology applied to the generated bootstrap
or multipleimputation sample, we cannot get a proper handle on the variability of our estimates
without usingreplicate versions of the pseudo micro-data file. Generating multiple replicates,
however, is a relatively simple task and estimating variances using the multiple versions of estimated
parameters is then straightforward and, doesn't necessarily require special computer programs.

5. SOME DETAILS FOR THE CATEGORICAL DATA CASE

Here we outline the estimation and simulation process of Section 4 for the special case of categorical
variables and cross-classification. Our focus is on parametric estimation of the c.d.f. which as we
note above in equivalent to estimating the cell probabilities in a contingency table.

The most common class of statistical models used in connection with contingency table data is the
loglinear model and for a set of basic sampling schemes (e.g., see Bishop, Fienberg, and Holland,
1975 andrienberg, 1980) there is a direct relationship between a specific hierarchical loglinear
model and a set of marginal tables that correspond to the minimal sufficient statistics associated with
the model. If we report only those marginal totals appropriate for a loglinear model that fits the data
well, then another investigator can, in effect, reconstruct the cell probabilities for the full
contingency table (c.f., Fienberg, 1975). Further, reporting only a specific set of marginal tables is
saying that these are the only totals needed for inference and this is implicitly suggesting the
appropriateness of a specific loglinear model.

As we noted in Section 2, the two most commonly used methods for data disclosure avoidance in
categorical variable settings are cell suppression and data swapping. Unfortunately there seems to
be a total disconnect between the literature on disclosure avoidance for categorical variables and the
now standard literature on loglinear models for categorical data. This is rather unfortunate since, as
we noted in Section 2, the notion of margin preservation is fundamental to both cell suppression and
data swapping. In the former, cells are suppressed subject to marginal constraints and, in the latter,
individuals with one set of margins fixed are swapped between cells thus preserving other totals.
Thus key features of these methods can be embedded in the loglinear model framework thus
suggesting alternative ways to approach disclosure avoidance. Further results form the loglinear
model literature may well be of value in understanding the properties of methods such as cell



suppression andata swapping (c.f. the discussion in Fienberg, 1995), but here we pursue an
alternative approach linked to the general strategy described in Section 4.

Finding a cross-classified table of counts that satisfies a given set of marginal constraints is a
problem which has occupied the attention of a substantial number of statisticians in recent years
(e.g., see Agresti 1993glterman, Chan, and Mielke, 1995). A number of algorithms have been
proposed but they have been implemented primarily for two- and three-way cross-classifications
(e.g., see Patefield, 1981). New ideas from the literature on graphical loglinear models suggest that
implementation for higher dimensions may at last become feasible (e.g., Edwards, 1995, and
Lauritzen, 1996, or Whittaker, 1990 for details on graphical models). The framework we outline in
Section 3 requires us to produce a smooth c.d.f. and then sample from it. In the present context, this
seems to suggest, at least heuristically, that we should consider making draws from the exact
distribution conditional on a fixed set of marginal totals.

Consider a three dimensional contingency table with cell congjtafid expected cell values}.
We can fit loglinear models to the expected cell values such as the model of no 2nd-order interaction

l0g My =U+Uy ) +Up FUs U 16U 136TU 231 (1)

with appropriate side-constraints for identification purposes. The minimal sufficient statistics or
“fully efficient statistics” for this model are the margins that correspond to highest order terms:

{ni b {nge b {nuc -

A special case of model (1), in whieB,,=0 for all j andk interpretable as the conditional
independence of variables 2 and 3 given variable 1. All conditional independence models for a
multidimensional contingency table are loglinear models.

Darroch, Lauritzen, and Speed (1980) introduced the special subfamily of loglinear models known
as graphical loglinear models, which are characterized by simultaneous conditional independence
relationships. This subfamily of models can be represented by a set of graphs whose nodes
correspond tdhe variables of the table and where the absence of an arc connecting two nodes
implies that those variables are conditionally independent given the remaining variables.

In unpublished work in the 1970’s, Darroch attempted to construct a Markov chain algorithm for

generating draws from the conditional distribution given the margins implied by a loglinear model.

His transitions in effect involved one-step data swaps. Glonek (1987) showed that the resulting
algorithm converges only when the Markov chain is irreducible. In particular, he showed that this

was not the case for the no 2nd-order interaction model, (1), for a 3-way table.

Diaconis and Sturmfels (1993) showed how to implement the Darroch-Glonek approach and provide
a proof of the convergence of the algorithm through the irreducibility of the Markov chain. We
propose to generate draws from the exact distribution under graphical loglinear models using their
algorithm. In order to ensure some level of smoothness in the resulting tables, we can retain only
those draws “compatible” with a more complex loglinear model..

Alternatively we can generate a full posterior distribution of the cell probabilities in the table, e.g.,
using the methods of Epstein and Fienberg (1992) or Madigan and York (1995), and then sample
from that posterior distribution.



We are in the process of actually implementing this strategy using data from the 1990 decennial
census and the Diaconis-Sturmfels-Glonek-Darroch algorithm for graphical models.

6. TAKING VARIABILITY SERIOUSLY

It is important to distinguish between the idea of generating public-use micro-data files based on real
people and real data through a statistical simulation process, such as we have outlined in this paper,
and the typical micro-simulation model, which may rely on indirectly on data via statistical models
but which does not correspond to data on real people. There is a serious difference between "pseudo
people” who resemble individuals from whom we have actually collected data of interest, and
"imaginary people" for whom we have invented data through a stochastic or nonstochastic modeling
process. In this paper we propose the former, not the latter.

6.1 Virtues of Proposed Framework

There are several virtues of the proposed framework outlined above. First, we believe that it would
force agencies to take their own data and their sources of error more seriously, as these are key
inputs to the modeling effort outlined in Section 4. Second, we believe that it would solve a large
part of the data disclosure avoidance problem. Third, the framework would generate public-use
micro-data files of a form that would allow users to apply standard statistical methodology and
model search methods.

6.2 Examples of Research to Be Done

There are a number of formidable technical details that need to be addressed before an agency could
properly implement the proposed framework. Examples of these include:

® How should an agency combine the multiple sources of error and uncertainty?
e \What smoothing methods should be used and how much smoothing is appropriate?

e How do we determine "effective” sample size for pseudo micro-data files? The application
of bootstrap ideas relies on certain series expansions (e.g., see Hall, 1992), and these
typically require the use of a bootstrap sample of the same size as the original sample. What
is the equivalent notion here?

eHow many replicates are required for variance estimation? Rubin (1987, 1993) suggests
the use of four or five replicates in the multiple imputation context. Efron and Tibshirani
(1993) uses large numbers of bootstrap replications. Will a smaller number suffice for either
approach?

Further the actual implementation of algorithms of the highly multidimensional situations involved

in censal and survey data may require new statistical methods and theory. For example, as we
suggested in Section 3he problem of simulating from distributions for multidimensional
contingency tables subject to marginal constraints has been implemented primarily for two and three-
dimensional tables. Implementation for higher dimensions requires new strategies and algorithms.
These are at the forefront of current statistical and mathematical research.



Finally, we may need to think about the statistical estimation problems outlined here in a form
different from that which we usually find in the methodological literature. Because of the
multiplicity of goals that we are attempting to address, we may need to think in terms of providing
the users with data that enable them to approximate the conditional distribWs F)1 )ggd

and rather than reproduce them in a more precise statistical fashion. This relates to Meng's (1994)
notion of uncongeniality between an imputer's assessment and those assessments of the users.

6.3 Summary

In this paper, we have tried to suggest that both government agencies and users bear responsibility
when it comes to utilizing census and survey data. It is no longer enough for agencies to prepare
public-use files and extensive sets of tabulations as they have in the past. Nor can they continue to
ignore the analytical goals tfe users of their data. At the same time, the users must learn how
various sources of survey error affect their analytical goals, and to build such information into the
statistical procedures they use.

We have argued that, by looking to and utilizing recent developments in statistical methodology, we
may be able to develop an integrated approach to the release and analysis of survey data which will
help us all learn to take uncertainty and error seriously. Perhaps the framework proposed in this
paper will be the first step towards this goal.

APPENDIX: AN OVERVIEW OF DATA SWAPPING AND ITS METHODS
1. Data Swapping Methods

The method of data swapping was originally proposed by Dalenius and Reiss (1978) and
subsequently considered by several others. A variant of the method was used in the 1990 U.S.
decennial census. In this Appendix we briefly describe this work, especially in terms of how it can
be implemented with categorical data in the form of a multi-dimensional contingency table.

Dalenius / Reiss Version

Data-swapping, according to Dalenius and Reiss (1982), is a way of presenting usable database
information, without compromising the security of any single piece of data. It involves swapping
the locations of individual pieces of data in a database in such a way that certain underlying statistics
remain unaltered.

The driving methodology behind data-swapping is contained at the beginning of Section 4 of
Dalenius and Reiss (1982):

The basic idea is that the value of a sensitive variable for a particular
individual cannot be compromised if there are at least two distinct
databases that are consistent with the underlying statistics and that
assign different values to that variable. This notion was extended to
a complete database by noting that a database is protected if and only
if each of the sensitive values is protected.

Therefore, if there exist two databases of responses, in which there are different values for each



sensitive variable without disturbing the underlying statistics, then a different database, which is just
as usable by researchers as the first, can be released and thereby keep from compromising the
confidentiality of those responses.

The example presented by Dalenius and Reiss shows a two-order data swap of one variable in a set
of four binary variables. Therefore they look for a series of swaps such that all two-way marginals
are left unchanged. For a set of 10 records, they swapped one variable for 4 of them. They found
5 series of such swaps involving 4 records that would preserve all 2-way marginals.

According to the Dalenius-Reiss definition dft-arder swap, ak-way marginals are preserved.

No higher order marginals are guaranteed to be preserved. They present no algorithm for doing these
swaps or finding which ones are available. They do, however, present theorems and statements
about the probabilities of there being swaps.

Census Version

The Census Bureau actually did a simulation of a variant of data swapping using 100% decennial
census data from the state of New Jersey. The purpose behind the simulation was to see if this
method would be acceptable as a disclosure avoidance procedure for the 1990 Census tabulations
and even possibly for the release of 1990 Census microdata. (see Griffin, et al. 1989, Navarro et al.,
1988, as well as Subcommittee Disclosure Avoidance Techniques, 1994). The results were
considered to be a success and essentially the same methodology was actually used for data releases
from the 1990 Census.

Navarro, Flores-Baez, and Thompson (1988) describe in detail the simulation. The first part involved
matching data records. The Bureau used two matching procedures. In the first procedure, two
housing units would match if they matched on the following items:

. number of persons of each race (white, blackEAIAPI, other) living in the household,
. humber of non-Hispanics living in the household,

. humber of Hispanics living in the household,

. humber of people 18 years or older living in the household,

. humber of units living at the address,

. mobile home or trailer designation.

OO, WNE

In the second procedure matched housing units if they had the same number of persons for every cell
of the 2 x 2 x 5 three-dimensional matrix defined by

1. age (under 18 years and 18 years and over),
2. Spanish Origin and not of Spanish Origin,
3. major race (White, Black, AIAE, API, other).

and had the same number of units at the address and the same mobile home or trailer designation.
The primary difference between the two procedures the cross classification of Spanish Origin by race
and age. Therefore there are only 10 variables on which to match in the first procedure, whereas
there are 22 variables on which to match in the second.

Using Dalenius and Reiss's terminology, the Census Bureau guaranteed that a set of specific



marginals will be the same. The pair of marginals that are guaranteed &€ljredy marginals

for thek variables being matched on and the location/switch variable ana irevay marginal for

all variables except for the location/switch variable. But the marginals involving the location
variable on which they switch and the remaining variables that are not matched on are not guaranteed
to stay unchanged, even at the two-way level.

SAFE Version

Appel, Kinzel, and Nolte (1993) introduce yet another method of protecting data. Their approach
implicitly involves the same ideas of keepikti-marginal totals constant and disturbing the
tabulations and cross-tabulations as little as possible, but takes a more direct route towards
"anonymization."

The method discovers how many times each uniqgue combination of variable keys occurs by creating
an n-dimensional contingency table. This contingency table has an implicit hierarchy of the
categories for the-1 variables for columns and then usesrtievariable cross-classifying for the

rows.

Thus, in other words, the number of columns equals the number of different combinations of
categories for the first1 variables and the number of rows equals the number of categories for the
nth variable. Next, they select all of those combinations that appear less than 3 times in the data file.
The article specifies these as being most "compromisable." Then they apply a set of five rules in a
specific order to the data. Whenever any data switching takes place, it takegtbi@cene of the
columns. This means that the only tabulations that will be disturbed are those involving the cross-
classifiednth variable, and thus tha-()-way margin involving all other variables will be preserved.

The five rules are:

1. Any combination with a frequency 1 is to be counted with any combination with
frequency 2.

2. If there are three combinations with frequency 1, the central combination is set equal to
3 and the other two are replaced with O.

3. Any combination with a frequency 1 is added to the combination with the greatest
frequency.

4. A frequency of 1 is subtracted from the maximum frequency and added to a combination
with frequency 2.

5. A combination with frequency of 2 is split up (rarely used).

Thus, if there are any combinations of the variables that have a frequency of less than three the data
will be perturbed in some fashion. The perturbations in the data will be limited to the row totals, not
the column totals. Therefore to readjust the one-dimensional row statistics, one must perform some
additional arbitrary adjustments on the data (referred to by the autltmsmpsnsation Once these
adjustments have been made so that the one-way marginals are correct and no combinations are left
with frequency of less than 3, then the data are "protected" in that no single released cell will have
no less than 2 observations. Also, it is only possible to try and identify those records that have been
added to others by whether or not they are 0, but with a high number of possible combinations, it
will be impossible to tell whether the combination had frequency 0 to start or not. This method also
provides protection for those categories in which there are no keys of a certain kind, because a user



or intruder will be unable to determine whether a 0 in the tabulation is a real O or an adjusted 0.

The SAFE method "guarantees” the preservation oitig-(vay margin for the first-1 variables

and the one-way margin for timéh variable as well. To do more, i.e. to preserve more margins
requires some sort of iteration Because the methods are not presented and described in the context
of formal statistical models, it is unclear exactly what is optimized and whether or not the procedures
can possibly converge. This relates to the notion, mentioned above for the Dalenius-Reiss method,
of the "existence" of data swaps.

Comparisons

The Census Bureau method and the SAFE method are similar in that they protect a certain set of
higher-dimensional margins but are not comprehensive in the lower-dimensional margins they
control. Dalenius and Reiss speak mainly of keeping fixed a completeksgapimarginals. Thus,

we can think of the Census and SAFE methods as attempting to maintain relationships at a high level
for some variables, and only at a low level for others, whereas the type of data-swapping discussed
originally by Dalenius and Reiss has the same "level of protection” for all variables.

Allowing for preservation of margins at different levels would seem to be important especially in
the swapping of census-type data swapping, because the location variable is the oneappied) sw

This means that someone using the data could not be sure of the relationship between the location
variable and any of the unmatched variables, even at a two-dimensional level. There is no reason
why swapping needs to be restricted in this particular fashion.

In summary, the data-swapping methods described in these three different sources, when applied to
purely categorical data, all have the characteristic of attempting to preserve certain pre-specified
marginal totals and then moving pairs of observations from one cell to another in compensating
ways. None of the papers make the link between their methods and those for the analysis of
loglinear, models as we do in this paper.
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