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Abstract

This paper provides analyses of daily retail data, extracting annual and weekly seasonal patterns

along with moving holiday effects, using an unobserved components framework. It is shown that

the weekly seasonality, which corresponds to the trading day effect observed in monthly time

series, can be treated in a dynamic framework via stochastic unobserved component models. A

secondary result is the measurement of economically significant holiday effects in retail sector

data, where the impact of Black Friday, Cyber Monday, Easter, Superbowl Sunday, and Labor

Day is explicitly determined.

Keywords: Big Data; Seasonal Adjustment; Signal Extraction

1 Introduction

Statistical agencies around the world are under increasing pressure from the public to generate

more data: more stratifications, finer regional detail, and greater frequency of observation. In the

post-war era, central banks and data publishing agencies in the developed world have typically

published economic data at a national level at quarterly or monthly frequency, with some sub-

national estimates available in particular cases. However, in the last decade – with the advent of

new information technologies, and the concomitant impact upon democracies of the surge in data

– modern cultures have been transformed by the wealth of measured phenomena, and the citizen

craves ever more information. As public institutions that serve the tax-payer, statistical agencies

in democracies are being compelled to offer more; failure to meet this demand ensures that the

public will resort to less reputable vendors of data.
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The U.S. Census Bureau (USCB) has for many decades published monthly retail and construc-

tion data at a national level, based on a survey of businesses. Given that this data – in its seasonally

adjusted form – is heavily used by economists, politicians, and journalists as the basis for forming

opinions about the economy, there is frequent demand for weekly or daily time series, available in

fine disaggregations (of business type) over a state or county regional map. There is some prece-

dent towards moving in this direction: the Bureau of Labor Statistics has long published its own

employment numbers on a weekly national basis (Pierce, Grupe, and Cleveland (1984)). Also, the

Longitudinal Employment and Household Dynamics database of the USCB currently publishes data

on hires and separations county by county, though on a quarterly schedule (Abowd and Vilhuber,

2011). As an experiment in Big Data, USCB participated in a pilot project along with the Bureau

of Economic Analysis, Palantir Technologies, Inc., and FirstData. FirstData furnished credit card

transaction data via a Palantir designed aggregation tool from which daily regional time series can

be tabulated.

FirstData is the largest credit card payment processor in the United States of America. All of

the credit, debit, prepaid, and EBT (Electronic Benefit Transfer) transactions for each merchant

that utilizes the FirstData service are recorded, with information on authorizations, settlements,

and an exact time stamp. These items, from over 600 merchant categories, are then aggregated

into the NAICS (North American Industry Classification Systemt) codes at a daily frequency, with

adjustments for the local time zone of the merchant. The result is a “big data” retail database,

covering all types of cards, all banks, all networks, and all fifty states, as well as all customer

segments and all sizes of merchants.

In order to gauge the utility of this high frequency retail data, several technical questions must

be addressed. Firstly, are the daily retail series from FirstData suitable proxies – once aggregated

to a monthly level – of the corresponding USCB monthly retail series? Secondly, to what extent do

analyses of the daily data – the identification of trend and seasonality, as well as moving holiday

effects – have ramifications for the seasonal adjustment of known monthly series? I.e., can daily

data provide greater insight and superior seasonal adjustment of the monthly data? Thirdly, can

daily data from FirstData be utilized to assist in the publication of new, more timely USCB retail

series? This paper is primarily focused on the second question, leaving the first and third topics

for future work.

Daily time series represent a substantial challenge for conventional time series modeling method-

ologies, which were developed to analyze monthly and quarterly data. (Harvey, Koopman, and

Riani (1997) and Cleveland and Scott (2007) treat the weekly case.) One key challenge is the pres-

ence of multiple types of seasonality, having weekly, monthly, or annual periods; see, for example,

Weinberg et al. (2007) and Hyndman and Fan (2010). Another key challenge is that trend and

annual seasonality (i.e., seasonal effects with an annual period) are difficult to distinguish, even

with a fairly large sample. However, there are enormous potential benefits to statistical agencies
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of utilizing daily data, with respect to the second question raised in the previous paragraph. The

additional information furnished could assist with a proper understanding of trading day effects

in monthly data, where the actual dynamic is essentially masked and distorted by the monthly

sampling scheme, and the vagaries of the Gregorian calendar (Bell and Hillmer, 1983). Secondly,

the analysis of daily data permits a direct engagement with moving holiday effects, which – like

trading day – are essentially corrupted by monthly sampling; see Findley, Wills, and Monsell (2005)

and Roberts et al. (2010).

There are comparatively few papers addressing signal extraction for high frequency time series.

One ground-breaking paper is De Livera, Hyndman, and Snyder (2011), which proposes stochastic

unobserved component models with a trigonometric form. These models are essentially the same

as the stochastic cycle models of Harvey (1989) and Harvey and Trimbur (2003), although adapted

to handle specific frequencies, and with a single source of error, i.e., all the latent components are

driven by a single innovation sequence. This single source of error approach represents a substantial

departure from the broad consensus on signal extraction, and appears to be motivated by compu-

tational considerations. The framework developed in McElroy and Trimbur (2015) and McElroy

(2017) is similar in spirit, but with the key difference that each latent component is driven by in-

novations that are uncorrelated with one another. This is more consistent with prevailing practice

in econometrics, although the question of cross-correlation in latent innovations is ultimately an

empirical one (cf. discussion in McElroy and Maravall (2014)).

This paper studies daily retail data through the tools of univariate unobserved component

models. We show the efficacy of these models for capturing dynamics that are latent within the

daily series, and how these extracted dynamics are related to the dynamics of a monthly time

series. Various important moving holiday effects are modeled and assessed. The key novel findings

of the paper are that weekly seasonality – corresponds to monthly trading day phenemona once the

daily data are aggregated to a monthly frequency – can be effectively modeled and extracted using

this paper’s statistical methods; secondly, that annual seasonality (which corresponds to the usual

seasonality of monthly and quarterly time series) can be captured, and it exhibits the essential

features seen in monthly seasonal factors, albeit at a daily time interval; thirdly, short windows

for moving holiday effects are quite effective in daily time series, and their impact is not only

statistically significant, but quite obviously economically significant as well. We present the data

in Section 2, discuss our modeling methodology in Section 3, the applications to signal extraction

and algorithmic innovations in Section 4, and the empirical results in Section 5.

2 Daily Retail Series from FirstData

We focus our study on nine daily retail series collected by FirstData, whose attributes are summa-

rized in Table 1. Each time series is daily, covering the period from October 1, 2012 through April
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12, 2016. In order to avoid disclosure, each series has first been divided by its October 1, 2012

value, so that the beginning of each series is at unity. As the nine series each correspond to different

facets of the retail economy, it is to be expected that certain holiday features may be present to

a greater or lesser degree depending on the sector. For example, we might suppose a Super Bowl

Sunday effect to be relevant for Sporting Goods Stores, and an Easter effect for Shoe Stores.

Plots of the time series are given in Figure 1. There is a complex seasonal pattern present,

along with a weak trend; in fact, the seasonality can be decomposed into a primary annual pattern

and a secondary weekly pattern – this is easiest to see in series 44511. While a monthly pattern

seems plausible, it is not a strong effect in these nine series, and can be omitted with no loss to

model quality. Some of the series (44311, 4482, and 45111) have salient additive outliers, although

in most cases these aberrations are actually the result of moving holiday effects, such as Easter,

Black Friday, Labor Day, and Cyber Monday.

Label Title Epithet

44311 Appliance, Television, and Other Electronics Electronic

44411 Home Centers Home

44511 Supermarkets and Other Grocery Stores Grocery

44814 Family Clothing Stores Clothing

4482 Shoe Stores Shoe

45111 Sporting Goods Stores Sport

45211 Department Stores Department

45291 Warehouse Clubs and Superstores Warehouse

45411 Electronic Shopping and Mail Order Mail

Table 1: Label, Title, and Epithet for daily retail data.

In order to get a crude initial analysis of the main features of each series, we compute spectral

density estimates via an autoregressive spectral estimator (Tiao and Tsay, 1983) and mark with

vertical lines the chief frequencies of potential interest (Bell and Hillmer, 1983). In Figure 2 we

display the spectral densities in units of a daily frequency; spectral peaks of a cusp-like convexity are

known to correspond to periodic behavior in the process’ autocorrelation function (Findley, 2005),

where the period is given by 2π divided by the radians frequency of the peak. In the spectral plot,

the x-axis has already been normalized, so that the ordinates correspond to the number of cycles

per year (i.e., the number of times a phenomenon occurs per year). The peaks indicated by the

vertical red lines correspond to 365/7, 2 · 365/7, and 3 · 365/7, or roughly 52, 104, and 156 – hence

once, twice, and thrice a week.

The green line denotes twelve cycles per year, i.e., the monthly frequency, and no such effect

is apparent in the series. The annual cycle, which corresponds to more conventional notions of
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Figure 1: Time series plots of daily retail data. Each series covers the period from October 1,
2012 through April 12, 2016.

seasonality, is the blue line. One of the key challenges with daily data is the entanglement of trend

and annual seasonality. This is because the annual frequency is 2π/365, or .99 degrees, which is

very close to zero, the trend frequency – this poses a difficulty for likelihood evaluation and signal

extraction computation. However, for these nine series the change in level – due to the limited

number of years for which there is measurement – is quite limited, which indicates the adequacy

of very simple trend models. These empirical considerations guide our choice of structural models,

discussed in the next section.
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Figure 2: AR spectral density estimate of daily retail data. Vertical red lines correspond to once a
week, twice a week, and thrice a week phenomena; the blue line corresponds to annual phenomena,
and the green line corresponds to monthly phenomena.

3 Modeling

Our basic model begins with the daily data, not paying particular attention to the day of week

pertaining to each time index – this will be captured through the weekly seasonal effect. We propose

a model for each univariate series {yt}, which has been appropriately transformed, providing an

additive decomposition into latent components:

yt = µt + ξat + ξwt + ιt + zt. (1)
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Here {µt} is a stochastic trend, {ιt} is a stationary transient (or irregular), and the seasonals come

in weekly ({ξwt }) and annual ({ξat }) varieties. We have omitted a monthly seasonal component for

the retail data, as their inclusion was not really warranted by the spectral analysis. Fixed effects

are incorporated through zt, which consists of a set of regressors (e.g., moving holidays and outliers)

– these may differ from series to series. Each of these latent processes involves model parameters,

which will need to be estimated in a preliminary modeling stage.

Treating these estimated parameters as if they are known, we may proceed to signal extraction,

which will allow optimal estimation of trend, seasonal, fixed, or transient effects. The trend and

seasonal latent processes will be supposed to be non-stationary, being defined such that differencing

by a polynomial δω(B) yields a mean zero, stationary time series. Here, for any ω ∈ [0, π], we define

δω(B) = 1− 2 cos(ω)B +B2.

As a special case δ0(B) = (1−B)2. In general, the null space of δω(B) has the basis of time series

e±iωt, or all deterministic time series of frequency ω. Now the frequencies appropriate for annual

and weekly effects in a daily time series are simply given by dividing the corresponding daily period

into 2π, yielding 2π/365 and 2π/7. (If desired, leap year could be accounted for by taking the

average year length over four years to be 365.25, but such subtleties make no difference to model

fitting.) These are the chief harmonics, although higher multiples of such frequencies might also be

considered. Combining the weekly frequency with its double and triple frequency harmonics, we

obtain

δ2π/7(B) · δ4π/7(B) · δ6π/7(B) = 1 +B +B2 +B3 +B4 +B5 +B6 =: Uw(B),

which is verified by polynomial arithmetic. We use each of these differencing polynomials to define

latent components by imposing that the differenced component is a white noise process. In each

case we denote the differenced component by putting a ∂ symbol in front of it. Therefore we have

∂µt = δ0(B)µt ∼WN(0, σ2µ)

∂ξat = δ2π/365(B)ξat ∼WN(0, σ2a)

∂ξwt = Uw(B)ξwt ∼WN(0, σ2w)

ιt ∼WN(0, σ2ι ).

The innovation variances are unknown parameters – in this case there are four of them. For the

retail series there are 1290 observations, so the model is quite parsimonious. When there is very

little change to the trend the trend innovation variance will be approximately zero, indicating a

fixed linear trend (i.e., µt = η1 + η2 t for parameters η1, η2). In our modeling, because the series

length is short, we found that a constant trend (setting η2 = 0) gave adequate results. For longer
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series with more nuanced trending behavior such a crude device would be undesirable1.

The spectral plots in Figure 2 indicate that the three weekly peaks can have varying width;

as argued in McElroy (2017), it is advantageous to entertain a more nuanced weekly specification,

known as the atomic specification:

ξwt = ξ
(1)
t + ξ

(2)
t + ξ

(3)
t

∂ξ
(1)
t = δ2π/7(B)ξ

(1)
t ∼WN(0, σ21)

∂ξ
(2)
t = δ4π/7(B)ξ

(2)
t ∼WN(0, σ22)

∂ξ
(3)
t = δ6π/7(B)ξ

(3)
t ∼WN(0, σ23).

This atomic specification yields five variance parameters for the full model. The fixed effects zt

take the form

zt = x′t β.

Here xt is a vector of r regressors, and β is the corresponding parameter. These regressors include

the fixed effects, namely additive outliers (an indicator regressor) and moving holiday effects, such

as Easter, Labor Day, Cyber Monday, Super Bowl Sunday, and Black Friday (we also considered

Chinese New Year, but this holiday had no impact upon any of the retail series).

Holiday regressors are constructed by first determining the calendar dates for the actual holiday,

say with day index t∗, and declaring a window of times [t∗ − b, t∗ + f ] for which the activity is

increased or decreased. The initial regressor is just the indicator on the window, taking value one

there and zero at other times; this window is present for every calendar year. Also, note that while

typically b, f ≥ 0, these can be negative as well. For example, a post-holiday effect is measured by

taking b < 0 and f > 0.

From these initial regressors, we compute the mean over all calendar years (as long as possible),

and subtract this long-term mean to get the holiday regressor. See Findley and Monsell (2009)

for background discussion. If multiple holiday windows are desired, several such regressors can be

added to the model. For example, an Easter-day effect utilizes b = f = 0, whereas a pre-Easter

effect is achieved via b = 8, f = −1, and both regressors can be inserted in the model.

As regards trading day effects, these phenomena will actually be measured through the weekly

seasonal component, and so no regressor is needed, unlike the case of monthly retail time series.

(Put another way, indicator regressors for day-of-week, once de-meaned to render them orthogonal

to the long-term mean, will be in the null space of Uw(B), and hence are not identifiable.) The

fixed trend effects are labeled under the µt process instead of zt; we have µt = η1.

In order to fit these latent component models, it is necessary to obtain the reduced form rep-

resentation for the observed process. Since all the differencing operators are distinct (i.e., the

1Modeling with a stochastic trend of order one or two resulted in failed convergence of the likelihood optimization,

with the algorithm terminating at a saddlepoint, indicating the possibility of over-differencing.
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polynomials share no common roots), the minimum differencing polynomial that reduces the data

to stationarity is given by their product, i.e.,

δ(B) = δ2π/365(B) · Uw(B) = δ2π/365(B) · δ2π/7(B) · δ4π/7(B) · δ6π/7(B).

Applying δ(B) to (1) yields

∂yt = δ(B)yt = δ2π/365(B) · Uw(B)µt

+ Uw(B) ∂ξat

+ δ2π/365(B) ∂ξwt

+ δ2π/365(B) · Uw(B) ιt

+ δ2π/365(B) · Uw(B) zt.

In the case of atomic weekly seasonals, we also have the expression

∂ξwt = Uw(B)ξwt = δ4π/7(B) · δ6π/7(B) ∂ξ
(1)
t + δ2π/7(B) · δ6π/7(B) ∂ξ

(2)
t + δ2π/7(B) · δ4π/7(B) ∂ξ

(3)
t .

The autocovariance sequence of {∂yt} is easily computed from these equations. In fact, the equation

for ∂yt takes the form of three (five in the case of atomic weekly seasonals) independent vector

moving average processes, of various orders, whose moving average polynomials are given by the

various products of differencing polynomials, each being driven by independendent white noises of

variances given above.

Regarding the first and last terms, the fixed effects: we simply apply the differencing operator

to each component regressor of µt and xt – so long as this is not annihilated, the fixed effect is

identifiable (otherwise, it is redundant with at least one of the components, and can safely be

eliminated from the model). Let us denote this vector of differenced regressors, for the trend and

non-trend effects, via

∂mt = δ(B)mt ∂xt = δ(B)xt.

Then ∂yt − ∂mt − ∂x′tβ is mean zero, with autocovariance structure given by summing the auto-

covariances of the three (or five) latent moving average processes. Thus, the parameter vector is

θ′ = [η1, β
′, σ2a, σ

2
w, σ

2
ι ] (in the case of atomic weekly seasonals, we replace σ2w by σ21, σ

2
2, σ

2
3), which in

the sigex software2 could be estimated via either an OLS and MOM (method of moments) scheme,

or preferably via maximizing the Gaussian likelihood. The estimates will be denoted θ̂.

With a fitted model in hand, we can proceed to check the goodness-of-fit via examination of

the time series residuals. If the model seems to be adequate, we may consider more parsimonious

nested alternative models. For example, if σ2w gets estimated as close to zero, we might attempt

2 sigex is a suite of R routines that allow modeling, forecasting, and signal extraction for multivariate time series,

available by request from the first author.
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to fit a nested model wherein the weekly seasonal component is removed. However, we should still

insert two regressors of the form cos(ωt) and sin(ωt) with ω = 2π/7, which are both in the null

space of the operator δ2π/7(B). If this substitution is warranted – assessed via an AIC comparison

– then we substitute a fixed effect (handled in the mean of the time series) for the stochastic effect

(handled in the variance of the time series), corresponding to a more stable phenomenon. This is

like having a spectral peak that is infinitely high and skinny – in contrast, a cusp-like peak with a

broad base and finite height corresponds to a dynamic phenomenon, that substantially differs from

exactly periodic behavior over a longer time span (Soukup and Findley, 2000). If the regression

parameter is negligible as well, then the component could be completely eliminated.

4 Signal Extraction

Once the modeling is complete, we can proceed towards signal extraction, which is concerned with

extracting (estimating) the components of interest. Actually, in the case of fixed components there

is nothing further to do, because we merely take

µ̂t = η̂1 ẑt = x′t β̂.

The stochastic components are more subtle to estimate. The seasonal components are centered

about zero, having expectation zero (conditional on their initial values). However, the seasonally

adjusted component consists of µt+ ιt, and should be centered around the overall level of the series.

For this reason, we should not enforce η1 = 0 even when its estimate has an insignificant t-statistic,

because doing so would generate a seasonal adjustment centered about zero, which might be offset

from the true level of the data.

Our approach reflects a frequentist philosophy; a Bayesian analyst would weave model selec-

tion, parameter estimation, and signal extraction into a seamless garment. Although arguably less

elegant, the frequentist approach is computationally simpler and still provides correct and rele-

vant results. Formulas for signal extraction are discussed in McElroy (2008); these formulas are

implemented in sigex. Alternatively, one could embed the model into a state space formulation,

and utilize the Kalman filter to evaluate the Gaussian likelihood (sigex uses the efficient Durbin-

Levinson algorithm instead), followed by a state space smoother to get signal extraction results.

The pros and cons of these approaches are discussed in McElroy and Trimbur (2015) and McElroy

(2017).

As compared with monthly time series, which has a single (annual) seasonal component, the

daily time series has two types of seasonality. One can always obtain derived monthly series

by aggregation (assuming a flow structure) of the daily series, and this operation would exactly

annihilate any monthly seasonality. The annual seasonal would be left, corresponding to the regular

seasonality observed in monthly data, and the weekly seasonal would actually become the trading
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day component. To see why this is so, consider the latent {ξwt }, whose extraction could actually be

plotted as seven sub-series, corresponding to each day of the week. Such an exercise is often done

for monthly time series, by viewing the extracted seasonal as twelve monthly sub-series of seasonal

factors. It may be that one of the daily sub-series (e.g., Saturday) is quite a bit higher than the

others – this will contribute more highly to a given month than another sub-series (e.g., Tuesday)

for which little activity occurs. (This would be especially relevant for retail data.) If a given month

includes five Saturdays rather than four, its monthly aggregate will be higher than is typical, due

to the calendrical composition – this is known as the trading day phenomenon (Findley, 2005).

In fact, when σ2w = 0 and the weekly seasonal reduces to a fixed effect, we obtain a single cosine

and sine (of period seven days) fitted to the weekly seasonality, which is assumed to recur with exact

repetition through the sample. We obtain added flexibility with the atomic weekly seasonal model:

if all of these are fixed effects (each having variance zero), then the weekly seasonal essentially

becomes the sum of six regression effects, corresponding to phenomena occuring once a week, twice

a week, and thrice a week. While these regressors will not exactly correspond to daily trading

regressors (which would just be an indicator for each day of week, for a total of six indicators),

they form an approximation. In order to get a more nuanced description of trading day, and the

weekly seasonality, one might consider modeling the daily data as a weekly seven-variate time series

– but this generates substantial modeling and computational challenges, where the advantages are

unclear.

These arguments indicate that the weekly seasonal effect with σ2w = 0 corresponds to trading

day, whereas letting σ2w > 0 allows for a stochastic trading day effect in monthly data; alternative

approaches to the modeling of dynamic trading day are discussed in Bell (2004) and Maravall and

Pérez (2012). On the other hand, the monthly and annual seasonal effects correspond to more

conventional notions of seasonality. Again, any monthly effects are never observed in monthly time

series due to aliasing; these might correspond to utility usage and payroll time series, or any kind

of economic activity conducted on a monthly basis. Seasonal adjustment entails the removal of all

seasonal components, along with moving holidays as judged appropriate. (Some holidays exhibit

calendrical oscillations that accord with seasonal frequencies, while others have longer periods that

indicate they should be associated with the transient irregular.)

5 Results

5.1 Holiday Specifications

For each series, an initial model specification was utilized with six moving holiday effects (Easter,

Black Friday, Cyber Monday, Labor Day, Super Bowl Sunday, and Chinese New Year) and a

fixed linear trend. A summary of the pertinent holiday effects is given in Table 2; the significant

11



t-statistics for these holiday effects are given in Table 3. For each series, holiday effects with

insignificant t statistics (at the 5% level) were removed, along with the trend slope if appropriate

(but the trend level was always retained, even if insignificant), and the model refitted. In each case,

such omissions of insignificant holiday effects generated an AIC improvement of two to six points.

On a computer (Intel Core 2.80 GHz with 8 GB RAM) the maximum likelihood optimization took

under two minutes of time, and the signal extraction results required about seven minutes; this is

negligible in comparison to the amount of time spent modeling.

Epithet Label Holiday Effects

Electronic 44311 pre-Easter, Easter-day, LD, BF, CM

Home 44411 Easter-day, LD, CM

Grocery 44511 pre-Easter, LD, BF

Clothing 44814 Easter-day, pre-Easter, LD, BF

Shoe 4482 Easter-day, pre-Easter, LD, BF

Sport 45111 SBS, Easter-day, BF, CM

Department 45211 Easter-day, BF

Warehouse 45291 Easter-day, LD, CM

Mail 45411 pre-Easter, LD, BF, CM

Table 2: FirstData daily retail series studied, with identified holiday effects (bold for positive, italics
for negative).

Epithet Label
Super Easter Labor Black Cyber

Bowl Day Day Friday Monday

Electronic 44311 -3.51 -7.11 8.51 3.32

Home 44411 -1.94 -10.63 2.89

Grocery 44511 2.41 -2.99

Clothing 44814 -6.92 -1.72 20.04

Shoe 4482 -10.80 2.90 39.79

Sport 45111 -1.69 -5.47 34.21 3.27

Department 45211 -2.12 15.52

Warehouse 45291 -2.17 -5.38 2.40

Mail 45411 -9.26 -4.96 5.67

Table 3: FirstData daily retail series studied, with t-statistics for significant holiday effects.

The time series residuals each indicate some residual autocorrelation was present, so additional

refining of the basic model is possible. However, our objective is to extract the annual and weekly

seasonality, and the postulated models are sufficient for this purpose; the seasonal adjustments
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were in each case adequate, indicating that the extraction of annual and weekly seasonality was

successful. The spectral density plots of the seasonally adjusted component are given in Figure 3,

with vertical lines having the same definitions as in Figure 2. The spectral estimates (not displayed)

for the annual and atomic weekly components have a single pole form, confirming the efficacy of

the extraction.
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Figure 3: AR spectral density estimate of seasonally adjusted daily retail data. Vertical red lines
correspond to once a week, twice a week, and thrice a week phenomena; the blue line corresponds
to annual phenomena.

5.2 Individual Holidays

Below there are brief summaries of the results for the holidays shown in Table 3.

13



5.2.1 Super Bowl Sunday

NAICS Code 45111 (Sporting Good Stores) is the only series with a significant Super Bowl Sunday

Effect. We often observe an increase in television sale promotion in the days and weeks leading

up to Super Bowl Sunday. The daily data, however, do not show this effect to be present in

NAICS Code 44311, which captures data from appliance, television, and other electronic stores.

Additionally, Super Bowl Sunday is often considered a food holiday; the lack of a significant effect

in the supermarket and grocery stores (NAICS Code 44511) is somewhat surprising. It is possible

that this food shopping is done in the days leading up to Super Bowl Sunday rather than on Sunday

itself.

5.2.2 Easter Day

Given that many retailers have no or reduced shopping hours on Easter Sunday, it was not surprising

that seven of the eight low aggregation series had a negative and significant Easter day holiday

effects.

5.2.3 Labor Day

Labor Day is another holiday where, while retailers may remain open for business, they may have

reduced business hours. Thus the significant, negative effects are not surprising in so many of

the series. The significant positive effect for supermarket and grocery stores (NAICS Code 44511)

can possibly be explained by a shifting of shopping typically done on Saturday and Sunday to the

Monday of the Labor Day three-day weekend. The positive and significant Labor Day effect for

Shoes stores (NAICS Code 4482) is less intuitive, as we would have expected it to behave like other

non-grocery stores.

5.2.4 Black Friday

Black Friday is likely the most famous shopping holiday at this time, though Cyber Monday is

a close rival. Thus it is not surprising that many of our retail series demonstrate a positive and

significant effect on a day known for deep discounts and limited time deals. Additional, the negative

and significant effect in the supermarket and grocery store series makes sense, as sales in those stores

typically fall on the days before Thanksgiving when shoppers prepare for Thanksgiving dinner.

5.2.5 Cyber Monday

Cyber Monday is a holiday centered upon online shopping. The positive and significant effects in

the lower aggregate NAICS code series may be attributed to online sales captured by FirstData

being featured in those NAICS codes rather than in the Non-Store Retailer NAICS Code (45411).
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At the time of the pilot, FirstData and Palantir were working on a better way to identify and

classify e-commerce transactions.

5.2.6 Non-store Retailers

NAICS Code 45411 captures those non-store retailers whose business is not necessarily limited

or constrained to normal retail hours. These retailers can include online, mail-order, or catalog

retailers. Of particular interest for this series are the shopping holidays that follow Thanksgiving.

Black Friday typically has a low aggregate focus, while Cyber Monday has an e-commerce focus.

We observe this in the series’ results with the negative and significant Black Friday, as well as the

positive and significant Cyber Monday results.

5.3 Signal Extraction Results

Figure 4 displays the signal extraction results for Appliance Stores (44311). There are two panels

to this plot (and others referenced in this section). The upper panel shows the data in black, the

seasonal adjustment in blue, the annual component in olive, and the weekly component in purple.

All components are shaded, with the width of shading corresponding to twice the square root of the

signal extraction mean squared error. The lower panel shows the data in black, the atomic weekly

components in purple, and the holiday effects (pre-Easter and Easter Sunday, Cyber Monday, Black

Friday and Labor Day) in green.

For four of the remaining series – Home Center Stores (44411, see Figure 5), Department Stores

(45211, see Figure 6), Warehouse Stores (45291, see Figure 7), and Electronic Shopping and Mail

Order (45411, see Figure 8) – there seemed to be some overall movement to the level, and it was

statistically plausible that η 6= 0. However, due to the short length of the series we deemed that

putting a drift in the trend might produce unwarranted conclusions about the longer-term behavior

in the series, and therefore we have chosen to present the results with the more conservative choice,

namely with η = 0. As for the other four series – Supermarket Stores (44511, see Figure 9),

Clothing Stores (44814, see Figure 10), Shoe Stores (4482, see Figure 11), and Sporting Goods

Stores (45111, see Figure 12) – we could not reject the null hypothesis that η = 0. Hence for all

nine series, the seasonal adjustment (blue) consists of a level-shifted irregular component.

Several features are apparent from these extractions. The annual component (olive) in some

cases contains monthly oscillations. Note that the extracted component is centered around zero, but

has been shifted downwards in the figures so as to facilitate visualization. The weekly component

in each series has no annual oscillation, although in some cases the amplitude appears to have an

annual period. Neither is there any weekly seasonality in the annual component, which is verified

by spectral peak plots (Figure 3).

Some of the anomalies in the data are captured in the annual component – e.g., a dip apparent
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in Spring 2013 for many of the series, which was explained (by Palantir) as a weakness in the

collection of merchant data at that time. Other aberrations are assigned to the irregular, and

hence are featured in the seasonal adjustment (blue). We also note that the weekly component

(purple) is obviously dynamic, which indicates that the use of deterministic regressors, as would

occur in the classical approach to trading day in monthly data, is inappropriate. The sum of

the annual and weekly components (not displayed) contains all of the seasonality together, and

corresponds in the case of monthly data to adding the trading day component to the seasonal

component.

6 Conclusion

This paper proposes a methodology for studying high frequency time series with holiday patterns

and multiple forms of seasonality. Structural models, with separate stochastic components for each

important frequency in the data spectral density, are proposed, along with simple regressors for

holidays based upon a window of activity. The proposed model for the weekly seasonal component

of the daily series offers a stochastic generalization of the fixed trading day effect in monthly series.

It is shown how these models correspond to a Gaussian process with fixed effects, which can be

converted to stationarity through appropriate differencing. Such a model can be fitted to high

frequency time series, such as the nine retail series furnished by FirstData, using the Gaussian

likelihood, as implemented in the routines of sigex.

Once models have been fitted and assessed, the holiday effects can be captured by examining

the corresponding regression coefficients, and both annual and weekly seasonality can be extracted

using classical algorithms. The uncertainty of both holiday effects and seasonal adjustment can be

assessed using these tools, because the variability is a by-product of the algorithms. For the retail

data the trend was extremely simple, being merely a constant, and hence separation of trend and

annual seasonality was trivial; more complicated cases, where a longer series requires a stochastic

trend, can in principle be addressed through the same methodology, but this is left for future

research.

The efficacy of the holiday modeling has some implications for seasonal adjustment internally

at USCB, where analysts have speculated that newer festivals such as Black Friday and Cyber

Monday do exert an impact on different facets of the retail economy. This conjecture has been

authenticated by our empirical results, and such a finding was not really possible before the access

facilitated by FirstData.

Findings from this work have had an immediate impact on the monthly retail series published

by the USCB, thereby affirmatively answering the second question posed in the introduction –

that daily data can assist with the seasonal adjustment of monthly data. In particular, the Easter

Sunday regressor was introduced in the February 2017 release of X-13ARIMA-SEATS. Moreover, in
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April 2017, the Easter regressor was implemented in the Monthly Retail Trade Survey production

for the Building Materials and Supplies Dealers series as well as the Automobile and Other Motor

Vehicle Dealers series (NAICS 4411 and NAICS 4412). The use of these new holiday regressors

for monthly series have provided superior modeling in some cases, giving an indirect validation of

the first question raised in the introduction, namely, that to some extent a daily retail series can

function as a proxy (at least for research purposes) of a corresponding monthly retail series.
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Figure 4: Signal extraction plot for Series 44311 (Appliance Stores). Upper panel: data in black,
seasonal adjustment in blue, annual component in olive, weekly component in purple. Lower panel:
data in black, atomic weekly components in purple, holiday effects (Easter, Cyber Monday, Black
Friday and Labor Day) in green.
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Figure 5: Signal extraction plot for Series 44411 (Home Center Stores). Upper panel: data in black,
seasonal adjustment in blue, annual component in olive, weekly component in purple. Lower panel:
data in black, atomic weekly components in purple, holiday effects (Easter, Cyber Monday, and
Labor Day) in green.
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Figure 6: Signal extraction plot for Series 45211 (Department Stores). Upper panel: data in black,
seasonal adjustment in blue, annual component in olive, weekly component in purple. Lower panel:
data in black, atomic weekly components in purple, holiday effects (Easter and Black Friday) in
green.
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Figure 7: Signal extraction plot for Series 45291 (Warehouse Stores). Upper panel: data in black,
seasonal adjustment in blue, annual component in olive, weekly component in purple. Lower panel:
data in black, atomic weekly components in purple, holiday effects (Easter, Cyber Monday, and
Labor Day) in green.
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Figure 8: Signal extraction plot for Series 45411 (Electronic Shopping Stores). Upper panel: data
in black, seasonal adjustment in blue, annual component in olive, weekly component in purple.
Lower panel: data in black, atomic weekly components in purple, holiday effects (Easter, Cyber
Monday, Black Friday, and Labor Day) in green.
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Figure 9: Signal extraction plot for Series 44511 (Supermarket Stores). Upper panel: data in black,
seasonal adjustment in blue, annual component in olive, weekly component in purple. Lower panel:
data in black, atomic weekly components in purple, holiday effects (Black Friday and Labor Day)
in green.
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Figure 10: Signal extraction plot for Series 44814 (Clothing Stores). Upper panel: data in black,
seasonal adjustment in blue, annual component in olive, weekly component in purple. Lower panel:
data in black, atomic weekly components in purple, holiday effects (Easter and Black Friday) in
green.
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Figure 11: Signal extraction plot for Series 4482 (Shoe Stores). Upper panel: data in black, seasonal
adjustment in blue, annual component in olive, weekly component in purple. Lower panel: data in
black, atomic weekly components in purple, holiday effects (Easter, Black Friday, and Labor Day)
in green.
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Figure 12: Signal extraction plot for Series 45111 (Sporting Goods Stores). Upper panel: data in
black, seasonal adjustment in blue, annual component in olive, weekly component in purple. Lower
panel: data in black, atomic weekly components in purple, holiday effects (Easter, Cyber Monday,
and Black Friday) in green.
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