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Abstract

In this paper, the authors derive the likelihood-based exact inference for singly
and multiply imputed synthetic data in the context of a multivariate regression model.
The synthetic data are generated via the Plug-in Sampling method, where the un-
known parameters in the model are set equal to the observed values of their point
estimators based on the original data, and synthetic data are drawn from this esti-
mated version of the model. Simulation studies are carried out in order to confirm the
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theoretical results. In case multiple synthetic datasets are permissible, the authors
provide an exact test procedure and compare their results with the asymptotic results
of Reiter (2005). An application using U.S. 2000 Current Population Survey data is
discussed. Furthermore, properties of the proposed methodology are evaluated in
scenarios where some of the conditions that were used to derive the methodology do
not hold.

Key Words: Finite sample analysis, Maximum likelihood estimators, Multivari-
ate Regression, Pivotal quantities, Plug-in Sampling, Statistical Disclosure Control,
Unbiased estimators.

1 Introduction

Methods of statistical disclosure control are used to achieve the competing goals of publish-

ing statistical outputs from surveys, while protecting the survey respondents’ confidential

data from disclosure. Statistical disclosure control methods include data swapping, pertur-

bation with randomly added or multiplied noise, and the release of synthetic data. The use

of synthetic datasets has gained considerable popularity and importance in recent times

(Klein et al., 2013). In this paper, we investigate some inferential aspects of statistical

analysis based on synthetic data when real datasets are not released and a single synthetic

dataset based on the original data is created as substitute for publication and analysis. We

will also discuss the case when multiple synthetic datasets are released and analyzed. Lit-

tle (1993) and Rubin (1993) first advocated use of synthetic data for statistical disclosure

control, using the framework of multiple imputation (Rubin, 1987). Rubin (1993) argued

that synthetic data so created do not correspond to any actual sampling unit, thus pre-

serving the confidentiality of the respondents. Inferential methods for fully synthetic data

were developed by Raghunathan et al. (2003), Reiter (2005) presented an illustration and

empirical study of fully synthetic data and Reiter and Raghunathan (2007) provided an

overview of multiple imputation techniques, including its use in statistical disclosure con-

trol. Reiter (2003) presented methods for drawing inference for partially synthetic data.

This is exactly the context of our paper. Usually there are two ways one can generate
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synthetic data: Posterior Predictive Sampling and Plug-in Sampling (Reiter and Kinney,

2012), and statistical methods of data analysis can deal with both cases.

Although most inferential methods for synthetic data are based on multiple imputation,

Klein and Sinha (2015a,b,c, 2016) in a series of recent papers developed exact parametric

inferential methods based on singly imputed synthetic data for several probability models,

including multiple linear regression model where the sole response variable is taken as

sensitive, thus requiring protection, while the covariates are treated as non-sensitive. There

are cases where singly imputed synthetic data have been released (Hawala, 2008), and

therefore procedures for valid data analysis are desirable.

Our main objective in this paper is to extend this scenario to the case of a multivariate

linear regression model where there are multiple sensitive responses following a multivariate

normal distribution with means modeled as linear combinations of multiple non-sensitive

covariates. Based on the fitted multivariate linear regression model, we synthesize the

sensitive responses based on the Plug-in Sampling method, and develop exact data analysis

procedures for both single and multiple imputation.

A brief description of the Plug-in Sampling method, which will be used throughout

the paper, follows (in a future communication we will address the case of Posterior Pre-

dictive Sampling method). Suppose that Y = (y1, ...,yn) are the original data which are

jointly distributed according to the probability density function (pdf) fθ(Y), where θ is

the unknown (scalar, vector or matrix) parameter. We start by taking the value of a

point estimator θ̂(Y) of θ, and plug it into the joint pdf of Y. The resulting pdf, with

the unknown θ replaced by the observed value of the point estimator θ̂(Y), is denoted

by fθ̂. The singly imputed synthetic data, denoted by V, are then generated by drawing

V = (v1, ...,vn) from the joint pdf fθ̂. In case of multiple imputation, this procedure is

independently repeated M times to generate M synthetic datasets.

In terms of the multivariate linear regression model, in our context, we consider several
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sensitive response variables yj, j = 1, ...,m, originating the vector of response variables

y = (y1, ..., ym)′, and a set of p non-sensitive predictors x = (x1, ..., xp)
′. We assume

that y|x ∼ Nm(B′x,Σ), with B and Σ unknown, and the original data consist of Y =

{(y1i, ..., ymi, x1i, ..., xpi), i = 1, ..., n}. We write Y = (y1, ...,yn) with yi = (y1i, ..., ymi)
′

and X = (x1, ...,xn) with xi = (x1i, ..., xpi)
′. We also assume that rank(X : p×n) = p < n

and n ≥ m+ p. We are thus considering the following regression model

Ym×n = B′m×pXp×n + Em×n (1)

where Em×n is distributed as Nmn(0, In ⊗Σ). It is well known that based on the original

data, B̂ = (XX′)−1XY′ is the MLE and the UMVUE of B, distributed as Npm(B,Σ ⊗

(XX′)−1), independent of Σ̂ = 1
n
(Y − B̂′X)(Y − B̂′X)′ which is the MLE of Σ, with

nΣ̂ ∼ Wm(Σ, n− p). Therefore S = nΣ̂
n−p will be the UE of Σ.

There are several tests for B based on the original data in the literature (Anderson,

2003). In this paper, the authors will develop a new procedure for using synthetic data to

draw inference for B, and also for C = AB and ∆ = ABD where A is a k × p matrix

with rank(A) = k ≤ p and k ≥ m, and D is an m × r matrix with rank(D) = r ≤ k.

This procedure will be based on the statistics

TO =
|(B̂−B)′(XX′)(B̂−B)|

|(n− p)S|
∼

m∏
i=1

p− i+ 1

n− p− i+ 1
Fp−i+1,n−p−i+1, (2)

TO,C =
|(AB̂−C)′(A(XX′)−1A′)−1(AB̂−C)|

|(n− p)S|
∼

m∏
i=1

k − i+ 1

n− p− i+ 1
Fk−i+1,n−p−i+1, (3)

TO,∆ =
|(AB̂D−∆)′(A(XX′)−1A′)−1(AB̂D−∆)|

|(n− p)D′SD|
∼

r∏
i=1

k − i+ 1

n− p− i+ 1
Fk−i+1,n−p−i+1.

(4)

The organization of the paper is as follows. In Section 2, based on singly imputed synthetic

data generated via Plug-in Sampling, we develop inference for the regression coefficients B.
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This will be based on a pivot statistic which is different from the classical test statistics for

B under this model (see Anderson (2003)). These statistics are shown to be non-pivotal

in the case of singly imputed synthetic data generated via Plug-in Sampling. Section 3

presents two exact inference procedures based on multiply imputed synthetic data. These

are contrasted with Reiter’s asymptotic methodology for multiple imputation synthetic

data (Reiter, 2005). In Section 4, we present some simulation results in order to check the

accuracy of the theoretically derived results for the singly imputed and multiply imputed

synthetic data, comparing the latter with the results obtained using Reiter’s methodology.

We also measure the radius (distance between the center and the edge) of the confidence

sets for the regression coefficients B, using with the original data, the singly imputed and

the multiply imputed synthetic data. Section 5 presents data analyses under the proposed

methods for singly and multiply imputed synthetic data in the context of public use data

from the 2000 U.S. Current Population Survey, and the results are compared with those

obtained from the original data. In Section 6, properties of the proposed methodology are

studied in scenarios where some of the conditions that were used to derive the methodology

do not hold. Specifically, in Section 6.1 we study the scenario where the error term in the

regression model is not normally distributed; in Section 6.2 we study the scenario where the

imputer who creates the synthetic data and/or the data analyst underspecify or overspecify

the regression model; and in Section 6.3 we study the scenario where the data analysis

model is something other than the regression of the sensitive variables on the non-sensitive

variables. Some concluding remarks are added in Section 7. Proofs of the theorems, and

other technical derivations appear in Appendices A and B.

We conclude this section with an observation regarding the existence of sufficient statis-

tics. Suppose the original data are Y ∼ fθ̂(Y), and the synthetic data V = (V1, . . . ,VM)

are generated such that V1, . . . ,VM |Y are iid from fθ̂(Y). Suppose that T(Y) is a suf-

ficient statistic for θ based on the original data. Then the pdf of the synthetic data
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V = (V1, . . . ,VM) is∫ { M∏
i=1

fθ̂(Y)(Vi)
}
fθ(Y)dY =

∫ { M∏
i=1

gθ̂(Y) (T(Vi))h(Vi)
}
fθ(Y)dY

=
{ M∏
i=1

h(Vi)
}∫ { M∏

i=1

gθ̂(Y) (T(Vi))
}
fθ(Y)dY,

which implies the following result.

Lemma 1.1. Suppose that when the original data Y are observed, T(Y) is a sufficient

statistic for θ. Then when the synthetic data V = (V1, . . . ,VM) are observed,

(T(V1), . . . ,T(VM)) is jointly sufficient for θ. Furthermore, if M = 1, the sufficient statis-

tic is simply T(V1), and if M > 1, then
∑M

i=1 T(Vi) is sufficient if

fθ(Y) = h(Y)ψ(θ) exp{γ(θ)′T(Y)}, i.e., if fθ(Y) belongs to the exponential family.

2 Analysis under Single Imputation

In this section, a likelihood-based approach for analysis of synthetic data generated from

a multivariate regression model is presented based on the Plug-in Sampling method.

Consider the multivariate linear regression model (1) with Y, X, B, Σ, B̂ and S defined

in that same context.

The synthetic data consist of a single synthetic version of Y generated based on the Plug-

in method as described below. From the original data (yi1, ..., yim, x1i, ..., xpi), i = 1, ..., n,

after estimating B and Σ by B̂ and S, respectively, we generate the synthetic data, denoted

as V = (v1, ...,vn) where vi = (v1i, ..., vmi)
′, are independently distributed as

vi|B̂,S ∼ Nm(B̂′xi,S), i = 1, ..., n. (5)

Our goal is to draw inference on B based on the synthetic data

(v1i, ..., vmi, x1i, ..., xpi), for i = 1, ..., n. Towards this end, let us define

B∗ = (XX′)−1XV′ and S∗ =
1

n− p
(V −B∗ ′X)(V −B∗ ′X)′, (6)
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which, by Lemma 1.1, are jointly sufficient for (B,Σ). The main inferential results we

derive are, for p ≥ m,:

1. the MLE of B is B∗, which is unbiased for B, with V ar(B∗) = 2Σ ⊗ (XX′)−1 (see

Appendix B.3);

2. an unbiased estimator of Σ is S∗(see Appendix B.3);

3. we prove in Theorem 2.2 (see below) that

T =
|(B∗ −B)′(XX′)(B∗ −B)|

|(n− p)S∗|
(7)

is a pivotal quantity and, for W ∼ Wm(I, n− p) and Fi ∼ Fp−i+1,n−p−i+1,

T |W st∼

{
m∏
i=1

p− i+ 1

n− p− i+ 1
Fi

}∣∣∣(n− p)W−1 + Im

∣∣∣
where

st∼ means ‘stochastic equivalent to’;

4. if one wants to test the significance of a set of regression coefficients or more gen-

erally, a linear combination of B, namely, C = AB where A is a k × p matrix

with rank(A) = k ≤ p and k ≥ m, we define TC =

|(AB∗ −C)′(A(XX′)−1A′)−1(AB∗ −C)|/|(n− p)S∗| and proceed by noting that,

for W ∼ Wm(I, n− p) and Fk,i ∼ Fk−i+1,n−k−i+1,

TC|W
st∼

{
m∏
i=1

k − i+ 1

n− p− i+ 1
Fk,i

}∣∣∣(n− p)W−1 + Im

∣∣∣; (8)

(i)Test for the significance of C: In order to test H0 : C = C0 versus H1 : C 6= C0, we

reject H0 whenever TC0 exceeds δk,m,p,n;γ where δk,m,p,n;γ satisfies

(1 − γ) = Pr(TC0 ≤ δk,m,p,n;γ) when H0 is true; In particular, a test for B = B0

follows upon taking A = Ip;

(ii)Confidence set for C: A (1− γ)-level confidence set for C is given by

∆(C) = {C : TC ≤ δk,m,n,p;γ}, (9)
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where the value of δk,m,n,p;γ can be obtained by simulating the distribution of TC using

the distribution in (8);

5. to infer about ∆ : k × r = ABD where A : k × p, B : p×m, D : m× r with r ≤ k,

we start from its natural point estimator ∆∗ = AB∗D and propose to use the pivotal

quantity

T∆ =
|(∆∗ −∆)′[A(XX′)−1A′]−1(∆∗ −∆)|

|(n− p)D′S∗D|
,

whose distribution is given by

T∆
st∼

{
r∏
i=1

k − i+ 1

n− p− i+ 1
Fi

}
|W∗ + (n− p)Ir|

|W∗|

where Fi ∼ Fk−i+1,n−p−i+1 and W∗ ∼ Wr(Ir, n− p), all independently. Taking r = 1

and k = 1, and making A : 1× p a matrix of zeros except for A1,i = 1, and D : m× 1

a matrix of zeros except for Dj,1 = 1, for i = 1, ..., p and j = 1, ..., p we may observe

that

T∆ = TB(i,j)
=

(B∗(i,j) −B(i,j))[A(XX′)−1A′]−1(B∗(i,j) −B(i,j))

(n− p)D′S∗D
therefore concluding that the (1− α) confidence interval for B(i,j) will be given by

B∗(i,j) ±
√
q∗1−α(n− p)D′S∗DA(XX′)−1A′

where in fact, D′S∗D = S∗(j,j) and A(XX′)−1A′ = (XX′)−1(i,i), with q∗1−α being the value

of the 1− α cut-off point of the distribution of T∆, for i = 1, .., p and j = 1, ...,m.

Results in 1-5 are derived based on Theorems 2.1 and 2.2.
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Theorem 2.1. The joint pdf of (B∗,S∗) defined in (6) is proportional to∫
exp

{
−1

2
tr
[
(Σ(I + Ψ))−1(B∗ −B)′(XX′)(B∗ −B) + (n− p)Ψ−1Σ−1S∗ + (n− p)Ψ

]}
× |S∗|

n−p−m−1
2 × |Ψ|

− p+m+1
2

|Σ|n−m+1
2

× |I + Ψ−1|−p/2dΨ.

Proof. See Appendix A

Theorem 2.2. The distribution of T defined in (7) can be obtained from the decomposition

T
st∼

{
m∏
i=1

p− i+ 1

n− p− i+ 1
Fi

}
|(n− p)W−1 + Im|

where Fi ∼ Fp−i+1,n−p−i+1 and W ∼ Wm(I, n− p).

Proof. See Appendix A

Remark 2.1. When m = 1, the statistic T in (7) reduces to the statistic T 2 used in (Klein

and Sinha, 2015a) which has a pdf obtained from the fact that

T 2|W=w ∼
[

p

n− p

] [
1 +

n− p
w

]
Fp,n−p where fW (w) =

1

2
n−p
2 Γ

(
n−p
2

)e−w
2 w

n−p
2
−1.

Remark 2.2. In Table 1, we list the simulated γ cut-off points dm,p,n;γ for T for some

values of p, m and n for γ = 0.05.

Table 1: Cut-off points of the 95% confidence set for the regression coefficient B

p n
m = 1 m = 2 m = 3

dm,n,p dm,n,p dm,n,p

3

10 4.667 8.033 8.108
20 1.234 5.419E-01 1.083E-01
50 3.698E-01 4.922E-02 2.849E-03

100 1.697E-01 1.044E-02 2.749E-04
200 8.212E-02 2.418E-03 3.040E-05

p n
m = 1 m = 2 m = 3

dm,n,p dm,n,p dm,n,p

4

10 7.693 29.22 106.1
20 1.652 1.165 5.356E-01
50 4.621E-01 9.248E-02 1.115E-01

100 2.089E-01 1.903E-02 1.034E-02
200 9.997E-02 4.339E-03 1.113E-03

In our context, one could suggest the following adaptations of the classical test criteria

for the multivariate regression model (see Anderson (2003) for the classical test criteria)
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(a) T1 = |S∗|
|S∗+(B∗−B)′(XX′)(B∗−B)| (Wilks’ Lambda Criterion)

(b) T2 = tr [(B∗ −B)′(XX′)(B∗ −B)(S∗)−1] (Pillai’s Trace Criterion)

(c) T3 = tr ((B∗ −B)′(XX′)(B∗ −B)[(B∗ −B)′(XX′)(B∗ −B) + S∗]−1)

(Hotelling-Lawley Trace Criterion)

(d) T4 = λ1 where λ1 denotes the largest eigenvalue of (B∗ −B)′(XX′)(B∗ −B)(S∗)−1

(Roy’s Largest Root Criterion),

but, unfortunately, these test statistics are non-pivotal statistics (see Appendix B.2).

3 Analysis under Multiple Imputation

In this section we first provide two new and exact inferential procedures based on the likeli-

hood principle for multiple imputation synthetic data and then clarify Reiter’s approximate

analysis for our setup.

3.1 A First New Procedure

In this subsection, we present a likelihood-based approach for exact inference about B

in case one has access to multiple released synthetic data sets. Let us consider that we

generate M(> 1) i.i.d. synthetic data sets V1, ...,VM. Let B∗i = (XX′)−1XV′i and

S∗i = 1
n−p(Vi−B′i

∗X)(Vi−B′i
∗X)′ be the estimators of B and Σ based on Vi. Condition-

ally on (B̂,S), for any i = 1, ...,M , B∗i is independent of S∗i and {(B∗1,S∗1), . . . , (B∗M ,S∗M)}

are jointly sufficient estimators for B and Σ. Let us also define

B
∗
M =

1

M

M∑
i=1

B∗i and S
∗
M =

1

M

M∑
i=1

S∗i , (10)

which are mutually independent, conditionally on B̂ and S. Analogous to what was done

in Section 2, one can derive the following inferential results, for p ≥ m:

1. B
∗
M is an unbiased estimator for B, with V ar(B

∗
M) = (M + 1)/M × Σ ⊗ (XX′)−1

(see Appendix B.3);
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2. an unbiased estimator of Σ is S
∗
M(see Appendix B.3);

3. we prove in Corollary 3.2 (see below) that TM =∣∣∣(B∗M −B)′(XX′)(B
∗
M −B)

∣∣∣ / ∣∣∣(n− p)S∗M ∣∣∣ is a pivotal quantity and, for

W ∼ Wm(Im, n− p) and Fi ∼ Fp−i+1,M(n−p)−i+1,

TM |W
st∼

{
m∏
i=1

p− i+ 1

M(n− p)− i+ 1
Fi

}
|M(n− p)W−1 + Im|;

4. if one wants to test the significance of a set of regression coefficients or more gener-

ally of a linear combination of these regression coefficients, AB = C where A is a

k × p matrix with rank(A) = k ≤ p and k ≥ m, one may define

TM,C = |(AB
∗
M − C)′(A(XX′)−1A′)−1(AB

∗
M − C)|/|(n − p)S

∗
M | and proceed by

noting that, for W ∼ Wm(Im, n− p) and Fk,i ∼ Fk−i+1,M(n−p)−i+1,

TM,C|W
st∼

{
m∏
i=1

k − i+ 1

M(n− p)− i+ 1
Fk,i

}
|M(n− p)W−1 + Im|; (11)

(i)Test for the significance of C: In order to test H0 : C = C0 versus H1 : C 6= C0, we

reject H0 whenever TM,C0 exceeds δM,k,m,p,n;γ where δM,k,m,p,n;γ satisfies

(1 − γ) = Pr(TM,C0 ≤ δM,k,m,p,n;γ) when H0 is true; in particular a test for B = B0

follows upon taking A = Ip;

(ii)Confidence set for C: A (1− γ)-level confidence set for C is given by

∆(C) = {C : TM,C ≤ δM,k,m,n,p;γ}; (12)

the value of δM,k,m,n,p;γ above can be obtained by simulating the distribution of TC,

by first generating W ∼ Wm(I, n− p) and then generating

TM,C|W ∼

{
m∏
i=1

k − i+ 1

M(n− p)− i+ 1
Fk−i+1,M(n−p)−i+1

}∣∣∣M(n− p)W−1 + Im

∣∣∣; (13)
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5. to infer about ∆ : k × r = ABD where A : k × p, B : p×m, D : m× r with r ≤ k,

we start from its natural point estimator ∆∗ = AB∗D and propose to use the pivotal

quantity

TM,∆ =
|(∆∗M −∆)′[A(XX′)−1A′]−1(∆∗M −∆)|

|(n− p)D′S∗MD|
,

whose distribution is given by

TM,∆
st∼

{
r∏
i=1

k − i+ 1

M(n− p)− i+ 1
Fi

}
|W∗ +M(n− p)Ir|

|W∗|

where Fi ∼ Fk−i+1,n−p−i+1 and W∗ ∼ Wr(Ir, n− p), all independently. Taking r = 1

and k = 1, and making A : 1× p a matrix of zeros except for A1,i = 1, and D : m× 1

a matrix of zeros except for Dj,1 = 1, for i = 1, ..., p and j = 1, ...,m we may observe

that the (1− α) confidence interval for B(i,j) will be given by

B
∗
M(i,j) ±

√
q∗M,1−α(n− p)S∗M(j,j)(XX′)−1(i,i).

The above results are derived based on the facts that B
∗
M |B̂,S ∼ Npm(B̂, 1

M
S⊗(XX′)−1)

and M(n − p)S
∗
M |S ∼ Wm(S,M(n − p)), and based on the following two Corollaries, of

Theorems 2.1 and 2.2, whose proofs are provided in Appendix A.

Corollary 3.1. The joint pdf of (B
∗
M ,S

∗
M) defined in (10) is proportional to∫

exp

{
−1

2
tr

[
(Σ(I +

1

M
Ψ))−1(B

∗
M −B)′(XX′)(B

∗
M−B)+M(n−p)Ψ−1Σ−1S

∗
M+(n−p)Ψ

]}
× |S∗M |

M(n−p)−m−1
2 × |Ψ|

−M(n−p)−n+2p+m+1
2

|Σ|
M(n−p)+p−m+1

2

× |I +MΨ−1|−p/2dΨ.

Corollary 3.2. The pdf of TM can be obtained from the decomposition

TM |W
st∼

{
m∏
i=1

p− i+ 1

M(n− p)− i+ 1
Fi

}∣∣∣M(n− p)W−1 + Im

∣∣∣
where W ∼ Wm(I, n− p) and Fi ∼ Fp−i+1,M(n−p)−i+1.
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3.2 A Second New Procedure

Noting that it will be possible to gather more information from the released synthetic data

we propose, in this sub-section, another likelihood-based approach for exact inference about

B. Let us start to recall that V is a m×n matrix constituted with the vectors (v1, ...,vn),

generated from vi|B̂,S ∼ Nm[B̂′xi,S], i = 1, ..., n. Having access to the M imputations

V1, ...,VM , with Vj = (v
(j)
1 , ...,v

(j)
n ), j = 1, ...,M , and note that, conditionally on B̂

and S, (v
(1)
i , ...,v

(M)
i ) is a random sample from Nm[B̂′xi,S], for any i = 1, ..., n. Let us

consider vi = 1
M

∑M
j=1 v

(j)
i and Svi =

∑M
j=1(v

(j)
i − vi)(v

(j)
i − vi)

′ which are the sufficient

statistics for Σ, based on the i-th covariate vector. Defining Sv =
∑n

i=1 Svi, we have

(v1, ...,vn,Sv) as the joint sufficient statistics for (B,Σ). Conditionally on B̂ and S, we

have vi ∼ Nm(B̂′xi,
1
M

S) and Sv ∼ Wm(S, n(M − 1)) since Svi ∼ Wm(S,M − 1).

From the M released synthetic data matrices Vj, j = 1, ...,M , we may define VM =

1
M

∑M
j=1 Vj and then define for B the estimator

B
∗
M = (XX′)−1XV

′
M , (14)

which ends up being the same estimator defined in subsection 3.1. Furthermore, we may

obtained additional information about Σ as Smean = (VM −B
∗′
MX)′(VM −B

∗′
MX) which

can be combined with the previous estimator Sv as

Scomb =
Sv +M × Smean

Mn− p
. (15)

Analogous to what was done in Section 2, one can derive the following inferential results,

for p ≥ m:

1. an unbiased estimator of Σ is Scomb (see Appendix B.4);

2. we prove in Corollary 3.4 (see below) that

Tcomb =

∣∣∣(B∗M −B)′(XX′)(B
∗
M −B)

∣∣∣∣∣(n− p
M

)Scomb
∣∣ , (16)
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is a pivotal quantity and that, for W ∼ Wm(Im, n− p) and Fi ∼ Fp−i+1,Mn−p−i+1,

Tcomb|W
st∼

{
m∏
i=1

p− i+ 1

Mn− p− i+ 1
Fi

}∣∣∣M(n− p)W−1 + Im

∣∣∣;
3. if one wants to test the significance of a set of regression coefficients or more generally,

a linear combination of B, namely, C = AB where A is a

k × p matrix with rank(A) = k ≤ p and k ≥ m, one may define Tcomb,C =

|(AB
∗
M − C)′(A(XX′)−1A′)−1(AB

∗
M − C)|/|(n − p

M
)Scomb| and proceed by noting

that, for W ∼ Wm(Im, n− p) and Fk,i ∼ Fk−i+1,Mn−p−i+1,

Tcomb,C|W
st∼

{
m∏
i=1

k − i+ 1

Mn− p− i+ 1
Fk,i

}∣∣∣M(n− p)W−1 + Im

∣∣∣; (17)

(i) Test for the significance of C: In order to test H0 : C = C0 versus H1 : C 6=

C0, we reject H0 whenever Tcomb,C0 exceeds ωM,k,m,p,n;γ where ωM,k,m,p,n;γ satisfies

(1−γ) = Pr(Tcomb,C0 ≤ ωM,k,m,p,n;γ) when H0 is true; in particular a test for B = B0

follows upon taking A = Ip;

(ii) Confidence set for C: A (1− γ) level confidence set for C is given by

∆(C) = {C : Tcomb,C ≤ ωM,k,m,n,p;γ}, (18)

where the value of ωM,k,m,n,p;γ may be obtained by simulating the distribution of

Tcomb,C, by first generating W ∼ Wm(I, n− p) and then generating

Tcomb,C|W ∼

{
m∏
i=1

k − i+ 1

Mn− p− i+ 1
Fk−i+1,Mn−p−i+1

}∣∣∣M(n− p)W−1 + Im

∣∣∣.
4. to infer about ∆ : k × r = ABD where A : k × p, B : p×m, D : m× r with r ≤ k,

we start from its natural point estimator ∆∗ = AB∗D and propose to use the pivotal

quantity

Tcomb,∆ =
|(∆∗M −∆)′[A(XX′)−1A′]−1(∆∗M −∆)|

|(n− p
M

)D′S∗combD|
,

14



whose distribution is given by

Tcomb,∆
st∼

{
r∏
i=1

k − i+ 1

Mn− p− i+ 1
Fi

}
|W∗ +M(n− p)Ir|

|W∗|
,

where Fi ∼ Fk−i+1,n−p−i+1 and W∗ ∼ Wr(Ir, n− p), all independently. Taking r = 1

and k = 1, and making A : 1× p a matrix of zeros except for A1,i = 1, and D : m× 1

a matrix of zeros except for Dj,1 = 1, for i = 1, ..., p and j = 1, ...,m we may observe

that the (1− α) confidence interval for B(i,j) will be given by

B
∗
M(i,j) ±

√
q∗comb,1−α

(
n− p

M

)
S∗comb,(j,j)(XX′)−1(i,i).

The above results are derived based on the observation that

B
∗
M |B̂,S ∼ Npm(B̂, 1

M
S ⊗ (XX′)−1) and (Mn − p)Scomb|S ∼ Wm(S,Mn − p), noting that

Smean|S ∼ Wm( S
M
, n− p), and based on the following two Corollaries of Theorems 2.1 and

2.2, whose proofs are provided in Appendix A.

Corollary 3.3. The joint pdf of (B
∗
M ,Scomb) defined in (14) and (15) is proportional to∫

exp

{
−1

2
tr

[
(Σ(I+

1

M
Ψ))−1(B

∗
M−B)′(XX′)(B

∗
M−B) + (Mn− p)Ψ−1Σ−1Scomb + (n−p)Ψ

]}
× |Scomb|

Mn−p−m−1
2 × |Ψ|

−Mn−p−n+2p+m+1
2

|Σ|
Mn−p+p−m+1

2

× |I +MΨ−1|−p/2dΨ

Corollary 3.4. The pdf of Tcomb defined in (16) can be obtained from the decomposition

Tcomb|W
st∼

{
m∏
i=1

p− i+ 1

Mn− p− i+ 1
Fi

}∣∣∣M(n− p)W−1 + Im

∣∣∣
where W ∼ Wm(I, n− p) and Fi ∼ Fp−i+1,Mn−p−i+1.

Remark 3.1. It is the case that Var(S
∗
M) > Var(Scomb), and therefore the second new

procedure is expected to outperform the first new procedure.
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Proof. Recalling the definition of S
∗
M , we get M(n − p)S∗M |S ∼ Wm(S,M(n − p)) and

(n − p)S ∼ Wm(Σ, n − p). We can write Var(S
∗
M) = E[Var(S

∗
M)|S] + Var[E(S

∗
M)|S] =

E[Var(Wm(S,M(n−p)))
M2(n−p)2 ] + Var[S]...(*)

Likewise, we can write Var(Scomb) = E[Var(Scomb)|S]+V ar[E(S)comb|S] = E[Var(Wm(S,Mn−p))
(Mn−p)2 ]+

Var(S)...(**)

To compare (*) and (**), obviously the 2nd terms are identical, and we show that the

first term in (*) is bigger than that in (**). We now use a very general result (Muirhead,

1982; page 90) that for any Wishart matrix Wp(Σ, ν), Var[vec(W )] = ν[Ip2 + K][Σ × Σ]

where K is a matrix of constants of order p2 × p2. Using the fact that ν = M(n − p) in

(*) and ν = Mn − p in (**), and rest of the expression in Var(.) is the same for both, it

readily follows that (∗) > (∗∗).

3.3 Reiter’s (2005) Methodology Under Multiple Imputation

Now we present a review of the methodology of Reiter (2005) for drawing inference based

on multiply synthetic data for a vector valued parameter and adapt it to our model. Orig-

inally developed for synthetic data generated by Posterior Predictive Sampling, but Reiter

and Kinney (2012) indicate that it is also valid for synthetic data generated via Plug-in

Sampling.

In order to be possible to use Reiter’s methodology to estimate B, a p×m dimensional

matrix parameter, we consider vec(B) = (B′1 B′2 ... B
′
m)′, a pm×1 vector parameter. Based

on the original data, vec(B̂) is an estimator of vec(B) and its covariance matrix estimator is

U = S⊗ (XX′)−1 a pm×pm matrix. Generating M synthetic data sets instead of just one

we end up with V1, ...,VM as the synthetic data sets. Let vec(B∗i ) = vec((XX′)−1XV
′
i)

and Ui = S∗i ⊗ (XX′)−1, where S∗i = 1
n−p(Vi − B∗

′
i X)(Vi − B∗

′
i X)′. Note that based on

Vi, conditionally in B̂ and S, vec(B∗i ) is an unbiased estimator of vec(B) and Ui is an
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unbiased estimator of its variance. Then the following estimators

vec(B
∗
M) =

1

M

M∑
i=1

vec(B∗i ), UM =
1

M

M∑
i=1

Ui,

bM =
1

M − 1

M∑
i=1

(vec(B∗i )− vec(B
∗
M))(vec(B∗i )− vec(B

∗
M))′

should be Reiter’s estimators to be used to draw inference about B, where vec(B
∗
M) is an

estimator for vec(B), its variance being estimated by T = 1
M

bM + UM . Let us consider

the statistic

TR,M =
(vec(B

∗
M)− vec(B))′(UM)−1(vec(B

∗
M)− vec(B))

pm(1 + r)

where r = tr(bMU
−1
M )

Mpm
. The distribution of TR,M is approximated by an Fpm,w(r) distribution

where w(r) = 4 + [pm(M − 1)− 4] [1 + 1/r − 2(rpm)−1(M − 1)−1]
2
.

4 Simulation Studies

In this section we present results of some simulations. The objectives of these simula-

tions are to demonstrate that (i) the inference methods used in Sections 2 and 3 perform

as we predicted for our proposed methodology for singly and multiply imputed synthetic

data generated via Plug-in Sampling, and (ii) to compare the accuracy of our proposed

methodology with the accuracy of Reiter (2005) methodology for multiply imputed par-

tially synthetic data. All simulations were carried out using the software Mathematicar.

To conduct the simulation, we take the population distribution as a multivariate normal

distribution with expected value given by the right hand side of (1), with matrix of regressor

coefficients B, and covariance matrix Σ, given by

B =


1 2

3 2

1 1

 and Σ =

 1 0.5

0.5 1

 ,
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for m = 2 and p = 3. The regressor variables x1i, x2i, x3i, i = 1, ..., n are generated as iid

N(1, 1) and held fixed for the entire simulation. Based on a Monte Carlo simulation with

105 iterations, we compute an estimate of the coverage probability (percentage of observed

values of the statistics smaller than the respective theoretical cut-off points) of the following

confidence regions, where in all cases, the level of the confidence region is set to 0.95:

1. the confidence sets for B and for C = AB, given by (9), respectively with A = I3 and

A = ( 02×1| I2), based on a single synthetic dataset generated as in (5); the estimated

coverage probability of the confidence set for B and the estimated coverage probability

of the confidence set for AB are shown in Table 2;

2. for the two new procedures in subsections 3.1 and 3.2, based on multiple synthetic

data, the confidence sets for B and for C = AB, given by (12) and (18), respectively

with A = I3 and A = ( 02×1| I2), using the methodology described in the two

subsections referred above; for M = 2, 5, 10, 20 synthetic datasets, the estimated

coverage probabilities of the confidence sets are shown in Table 2 under the columns

B(1) and AB(1) for the 1st new procedure, and under the columns B(2) and AB(2)

for the 2nd new procedure;

3. the confidence set for B obtained using the methodology of Reiter (2005), for M(> 1)

synthetic datasets, in subsection 3.3; for each of the cases M = 2, 5, 10, 20, the

estimated coverage probabilities of the confidence sets are shown in Table 2 under

the column vec(B).

The results reported in Table 2 for sample sizes n=10, 20, 50, 100, 200, show that, based

on singly imputed and multiply imputed synthetic data, the 0.95 confidence sets for B and

AB have an estimated coverage probability approximately equal to 0.95, confirming that

the confidence sets perform as predicted. As supported by the theory, using the adapted

methodology of Reiter (2005) for multiply imputed partially synthetic data the estimated

coverage probabilities fall short of the stipulated level of 0.95 for very small sample sizes,
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Table 2: Average coverage for B and AB

n

M = 1 M = 2 M = 5 M = 10 M = 20

vec(B) B(1) B(2) vec(B) B(1) B(2) vec(B) B(1) B(2) vec(B) B(1) B(2)

10 0.951 0.830 0.950 0.950 0.754 0.949 0.947 0.748 0.950 0.949 0.753 0.948 0.947
20 0.953 0.919 0.955 0.953 0.874 0.947 0.948 0.867 0.948 0.949 0.870 0.950 0.950
50 0.953 0.955 0.950 0.951 0.924 0.949 0.948 0.921 0.949 0.948 0.924 0.949 0.948

100 0.946 0.957 0.946 0.947 0.934 0.946 0.946 0.931 0.948 0.948 0.935 0.948 0.948
200 0.949 0.964 0.953 0.952 0.943 0.950 0.951 0.943 0.949 0.949 0.944 0.949 0.950

(a) Average coverage for B

n

M = 1 M = 2 M = 5 M = 10 M = 20

vec (1) (2) vec (1) (2) vec (1) (2) vec (1) (2)

10 0.950 0.968 0.949 0.950 0.791 0.947 0.946 0.799 0.948 0.946 0.791 0.944 0.947
20 0.952 0.994 0.950 0.951 0.888 0.948 0.947 0.891 0.949 0.949 0.888 0.950 0.950
50 0.954 0.999 0.953 0.954 0.931 0.950 0.949 0.927 0.948 0.946 0.928 0.949 0.949

100 0.946 1.000 0.946 0.948 0.940 0.948 0.948 0.937 0.949 0.950 0.939 0.948 0.948
200 0.951 1.000 0.953 0.952 0.946 0.949 0.950 0.948 0.951 0.949 0.948 0.950 0.949

(b) Average coverage for AB

but quickly attain the desired level even for moderate sample sizes for the cases where

M ≥ 5.

In order to measure the radius (distance between the center and the edge) of the confi-

dence sets, we propose the measure

ΥM = dM,m,n,p,γ × |(n− p)S̃M |,

where dM,m,n,p,γ is the cut-off point, where we take M = 0 for the original data with

S̃0 = S, M = 1 for singly imputed synthetic data with S̃1 = S∗, and M = 2, 5, 10, 20

for multiply imputed synthetic data with S̃M = S
∗
M for the first new procedure, and

S̃M =(n − p
M

)/(n − p)Scomb for the second new procedure. The expected value of this

measure will be

E(ΥM) = dM,m,n,p,γ ×
(n− p)!

(n− p−m)!
×KM,n,p,m|Σ|
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where K0,n,p,m = 1 for the original data and, for M ≥ 1,

KM,n,p,m =
1

Mm(n− p)m
(Mn−Mp)!

(Mn−Mp−m)!

for the first new procedure and

KM,n,p,m =
1

Mm(n− p)m
(Mn− p)!

(Mn− p−m)!

for the second new procedure, where when M = 1 it will refer the single imputed synthetic

data. For more details about these expected values see Appendix B.5.

For M = 0, 1, 2, 5, 10, 20 and sample sizes n = 10, 20, 50, 100, 200, we present the average

(avg) of simulated values of ΥM and its expected value (exp) E(ΥM) for B in Table 3 and

for C in Table 4.

Table 3: Average values of ΥM and the values of E(ΥM ) for the confidence set for B.

n Original

M = 1 M = 2 M = 5

avg exp
1st Approach 2nd Approach 1st Approach 2nd Approach

avg exp avg exp avg exp avg exp

10 37.55 214.29 219.96 90.62 92.84 85.74 87.56 54.83 55.28 51.61 51.94

20 22.76 102.91 103.29 53.50 53.79 52.20 52.47 32.58 32.69 32.50 32.57

50 18.73 78.10 77.43 42.58 42.34 43.13 42.86 27.34 27.17 27.11 26.94

100 17.74 73.44 73.34 40.11 40.09 40.27 40.24 25.28 25.27 25.54 25.53

200 17.41 69.81 69.72 39.07 39.01 38.62 38.56 25.09 25.07 25.08 25.06

n

M = 10 M = 20

1st Approach 2nd Approach 1st Approach 2nd Approach

avg exp avg exp avg exp avg exp

10 44.57 44.78 43.86 43.95 41.04 41.08 40.24 40.27

20 27.06 27.13 27.56 27.61 25.25 25.31 25.03 25.08

50 22.98 22.82 22.66 22.50 20.90 20.77 20.66 20.53

100 21.51 21.51 21.61 21.61 19.50 19.50 19.29 19.28

200 20.78 20.77 20.79 20.78 18.94 18.94 19.15 19.14
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Table 4: Average values of ΥM and the values of E(ΥM ) for the confidence set for AB.

n Original

M = 1 M = 2 M = 5

avg exp
1st Approach 2nd Approach 1st Approach 2nd Approach

avg exp avg exp avg exp avg exp

10 13.36 72.57 74.49 32.62 33.42 30.61 31.26 19.56 19.72 19.00 19.12

20 8.66 39.00 39.15 20.12 20.23 20.17 20.27 12.71 12.75 12.45 12.48

50 7.44 31.23 30.97 16.67 16.58 16.79 16.69 10.70 10.63 10.55 10.48

100 7.14 28.30 28.27 15.89 15.88 16.12 16.11 10.07 10.07 10.10 10.10

200 6.92 27.76 27.72 15.80 15.78 15.56 15.54 9.72 9.72 9.85 9.84

n

M = 10 M = 20

1st Approach 2nd Approach 1st Approach 2nd Approach

avg exp avg exp avg exp avg exp

10 16.07 16.15 15.61 15.64 14.44 14.45 14.49 14.50

20 10.38 10.41 10.41 10.43 9.55 9.58 9.54 9.56

50 8.94 8.88 8.76 8.70 8.25 8.20 8.10 8.04

100 8.42 8.43 8.63 8.63 7.68 7.68 7.77 7.77

200 8.40 8.40 8.16 8.16 7.64 7.63 7.56 7.56

Observing Tables 3 and 4, we conclude that as the number M of released synthetic

datasets increases, ΥM decreases and eventually coincides with the value of Υ0, indeed as

expected, since as M increases, the amount of information about the original data released

increases, leading us closer to the inference drawn from the original data . We also observe

that the values of ΥM ,M > 1, for both procedures become identical for larger sample sizes.
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5 An Application Using Current Population Survey Data

In this section we provide an application based on some real data and compare the infer-

ence based on the original data with the inference based on the synthetic data, according the

procedures developed in sections 2 and 3 and also the method of Reiter (2005). The data are

from the U.S. 2000 Current Population Survey (CPS) March supplement, available online

from

http://www.census.gov.cps/. We will only focus on the household records. The full data

has seventeen variables measured on 51,016 heads of households and it includes the vari-

ables age, race, sex and marital status as key identifiers and a mix of other categorical and

numerical variables. For the vector y of response sensitive variables, we have selected two

numerical variables, namely, total household income(I) and household property tax (PT).

After deleting all entries where at least one of these variables are reported as 0, we were

left with a sample size of 32923. The example addressed below, based on a sample of size

n = 32923, using the proposed exact methods developed in Section 2 and Subsections 3.1

and 3.2, illustrates the capabilities of this methods. Moreover, in situations where the

number of response sensitive variables is larger that the number of non-sensitive predic-

tors being analyzed, only the procedure of Reiter (2005) can be used. We will use the

assumption of the normality of the fifth root of the response variables, and as such we will

use the fifth root of the original variables. As we may observe in Figure 1, the marginal

distribution of the transformed variables is approximately normal.

We proceed as if these n = 32923 households are a random sample, and that these two

variables are confidential. We treat these public use data as the original data. Although

in the data file a large number of variables is available, we will only use the following set

of covariates:

N: number of people in household;
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Figure 1: Smothed Empirical distributions of variable responses PT and I

L: number of people in the household who are less than 18 years old;

A: age for the head of household;

E: education level for the head of the household(coded to take values 31, 34-37, 39-46);

M: marital status for the head of the household (coded to take values 1,3-7);

R: race of the head of the household (coded to take values 1,2,4);

S: sex of the head of the household (coded to take values 1,2).

We refer to the Current Population Survey March 2000 technical documentation (avail-

able at http://www.census.gov/prod/techdoc/cps/cpsmar00.pdf) and Klein and Sinha (2015a)

for details.

As such, in this application, x, the vector of regressor variables, is defined as

x =
(

1,N,L,A, I(E = 32), ..., I(E = 46), I(M = 2), ..., I(M = 7),

I(R = 2), ..., I(R = 4), I(S = 2)
)′
, (19)

where I(E = 31) is the indicator variable for E = 31, i.e. for individuals that have completed

less than 1st grade, I(E = 32) is the indicator variable for E = 32, i.e. for individuals that

have completed 1st,2nd,3rd,or 4th grade, and so on, and where the indicator variables for

the first code present in the sample for each variable is taken out in order to make the
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model matrix full rank. The model matrix X = [x1 · · ·xn] has p = 29 rows and n = 32923

columns, with rank equal to 29. Using the plug-in sampling method, we generate a single

synthetic dataset. The realizations of the unbiased estimators B∗ and S∗ of B and Σ, are

respectively shown in Table 5 and in expression (20), along with the realizations of the

original data estimators B̂ and S. These estimates are respectively denoted by B̃∗, S̃∗,
˜̂
B

and S̃, with

S̃∗ =

 0.6576 0.2090

0.2090 1.2905

 , S̃ =

 0.6626 0.2130

0.2130 1.2898

 . (20)

We see that the point estimates of B̂ based on the synthetic data and the original data

tend to be in agreement. We also find that the two estimates of Σ, S̃ and S̃∗, tend to have

a general agreement.

We now present inferences on regression coefficients obtained by applying the method-

ology from Section 2 and Section 3 to analyze the singly imputed synthetic data and

multiply synthetic data, considering M = 2 and M = 5. For this purpose, we use the

statistics T , TM , Tcomb and TR,M defined in sections 2 and 3 and their empirical distribu-

tions (105 simulation size) to test the significance of the model, for γ = 0.05. For M = 1

we obtained Tcalc = 4.96468 that is larger than the determined cut-off point for this case,

d2,32923,29;0.05 = 5.14914 × 10−6 with a corresponding p-value approximately equal to 0,

therefore, rejecting the non-significance of the model, that is, assuming that the explana-

tory variables in x have a significant role in determining the values of the response variables

in y. For M = 2 and M = 5, using both new procedures, one finds a similar p-value, with

the values of the cut-off points as 4.94839 and 5.06947, for the first procedure, and cut-

off points of 4.94420 and 5.06190, for the second procedure, respectively. If we perform

the same test in the original data using (2), we obtain for TO in (2) the computed value

TO,calc = 4.93432 that is also larger than the determined cut-off point 1.27984× 10−6 with

a the p-value approximately equal to 0, also rejecting the non-significance of the model.
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In figure 2, one can see a histogram associated with the empirical distribution of T (105

simulation size).

0 1.×10-6 2.×10-6 3.×10-6 4.×10-6 5.×10-6 6.×10-6 7.×10-6
0

5000

10000

15000

Figure 2: Histogram of the Empirical values of T

Generating datasets for M = 1, M = 2 and M = 5 synthetic datasets where we gather

the different p-values obtained using (8), (11), (17) and also the adapted procedure of

Reiter (2005). In the latter we replaced vec(B∗i ) by vec(AB∗i ), vec(B) by vec(AB) and

took Ui = S∗i ⊗ (A(XX′)−1A′). From the synthetic datasets the p-values gathered for

M = 1, M = 2 first, second and adapted Reiter’s procedures, M = 5 first, second and

adapted Reiter’s procedures where respectively 0.00408, 0.00001, 0.00001, 0.00016, 0, 0 and

0. we may note that for all procedures the p-values are very close to zero as also was the

original p-value. It is interesting to observe that the gathered p-values for M=1 are not

very far from the ones obtained for M=2, leading all to the same conclusion, the rejection

of the non-significance of the set of regressor coefficients. Comparing the two multiple

imputation procedures developed we observe that they present very similar p-values, with

the second new procedure having a slightly better approximation to the p-values obtained

from the original data. Also, with the increase of the value of M the p-values gets smaller,

which although it may be seen as an advantage, it comes at the expenses of a decrease in

confidentiality.

Alternatively it is possible to construct the individual confidence intervals of all regres-
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sion coefficients by using the procedures in Sections 2 and 3. In Appendices B.6, B.7, B.8,

B.9, and B.10 are shown the confidence intervals for all regression coefficients deriving from

the original data and the synthetic datasets for M=1,2,5. From these confidence intervals

one may observe that for increasing value of M , the confidence intervals becomes smaller

and smaller becoming closer and closer to the size of the one derived from the original data.

This fact concurs with the study of the radius done in Section 4.

6 Evaluations Under Non-Ideal Conditions

6.1 Non-normal error distribution

In this section we briefly discuss the issue of robustness of our proposed synthetic data

analysis methods when errors are non-normal, but the regression is still multivariate linear.

In other words, the error term E in (1) is not normally distributed. In the sequel we consider

two types of deviations from normality: t-type (keeping symmetry) and skew-normal type.

Under t-type, we generate yi : m× 1 as

yi = B′xi + Σ1/2ti

[√
ν − 2

ν

]
, for i = 1, 2, . . . , n

where ti = zi

[√
ν
η

]
and zi’s are iid with each component distributed as N(0, 1) indepen-

dent of η ∼ χ2
ν . This results in the yi’s being independent multivariate t-distributed vectors.

In the Table 5 we have displayed the results of a simulation study under a similar scenario

as in Section 4, except that the original data are now generated from the regression model

above whose error term has the multivariate t-distribution. We observe in Table 5 that the

coverage probability of the confidence regions of our proposed procedures is approximately

equal to the nominal value of 0.95. In the table we observe that for sufficiently large n the

coverage probability of the procedures of Reiter (2005) is also approximately equal to 0.95
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in the M ≥ 5 cases considered.

Under the skew-normal distribution (Azzalini, 1985; Henze, 1986), we generate yi as

yi = B′xi + Σ1/2zi

where them components of zi are iid with each component distributed as (sk−µsk)/
√
var(sk).

Here sk ∼ skew-normal[0, 1, λ] with µsk = E(sk) =
[√

2
π

] [
λ√
1+λ2

]
and var(sk) = Var(sk) =

[1 −
(
2
π

) (
λ2

1+λ2

)
]. Under this data generation scheme, yi’s will have a skew-normal distri-

bution with linear regression as before. The parameter λ represents the extent of deviation

from symmetry. In the Table 6 we have displayed the results of a simulation study under a

similar scenario as in Section 4, except that the original data are now generated from the

regression model above whose error term has the skew-normal distribution. We observe

in Table 6 that the coverage probability of the confidence regions of our proposed proce-

dures is approximately equal to the nominal value of 0.95. In the table we observe that

for sufficiently large n the coverage probability of the procedures of Reiter (2005) is also

approximately equal to 0.95 in the M ≥ 5 cases considered.

6.2 Regression model is overspecified or underspecified by im-

puter or data analyst

In this section, which is patterned after Klein and Sinha (2016), we discuss in details

the consequences of overspecification or underspecification of the regression model in the

analysis of synthetic data as developed in the previous sections. This is rather crucial

because the data analysis carried out by the data users which happens at the very last

stage obviously depends on the nature of data released to them, which in turn depends on

the underlying model which produced the observed data and the imputer’s role in creating

synthetic data out of it.

To be concrete, we define the following models:
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• Data-generating model (DM): The true population model that generates the original

data

• Imputation model (IM): The statistical agency’s assumed model for the original data.

Based on this model, the statistical agency creates synthetic data.

• Analysis model (AM): The data analyst’s assumed model for the original data. Based

on this model the data analyst, who only has access to the synthetic data, uses the

synthetic data for inference.

Referring to our basic multivariate regression model (1), we consider the situation when

the matrix X of covariates can be decomposed into two parts X1 and X2, and our primary

interest lies in the regression coefficients B1 associated with X1, and X2 may or may not

be relevant for the matrix response Y. We thus consider the cases where each of these

models (DM,IM,AM) takes one of two forms:

Full Model (F) : Y = B′1X1 + B′2X2 + E

Reduced Model (R) : Y = B′1X1 + E

where E ∼ Nmn(0, In⊗Σ). This leads to eight combinations of models which we will denote

by the juxtaposition of letters associated with the appropriate model. For example, ’RFR’

is the case where the Data follow the reduced model (R), the Imputer infers and imputes

according to the full model (F) and the Analyst infers according the reduced model (R).

We list these combinations as (FFF, FFR, FRF, FRR,RFF,RFR,RRF,RRR) and use

’Case i’ in reference to the model combination described by the ith term of this list.

28



The following matrices are used in the sequel:

P = X ′1 (X1X
′
1)
−1
X1

R = I−P

L = (X1X
′
1)
−1
X1X

′
2

M = (X2RX
′
2)
−1

X =

 X1

X2


Procedure Under Reduced Model

Under the reduced model, the imputer generates V1, . . . ,VM
iid∼ Nmn

(
B̂′1X1, In ⊗ Σ̂

)
in-

dependently given
(
B̂ , Σ̂

)
. Imputer and analysts estimates under the reduced model have

the form:

B̂1 = (X1X
′
1)
−1

X1Y
′

Σ̂ =
Y
[
I−X ′1 (X1X

′
1)
−1X1

]
Y ′

n− p1

The analyst computes these estimates with Y replaced by the jth synthetic dataset Vj to

produce a set of 2M estimates

{(
B̂1Aj , Σ̂Aj

) ∣∣∣∣j = 1, . . . ,M

}
.

Procedure Under Full Model

Under the full model, the imputer generates V1, . . . ,VM
iid∼ Nmn

(
B̂′1X1 + B̂′2X2, In ⊗ Σ̂

)
independently given

(
B̂ , Σ̂

)
. Imputer and analyst estimates under the full model have
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the form:

B̂1 = (X1X
′
1)
−1

X1

[
I−X′2 (X2RX′2)

−1
X2R

]
Y ′

B̂2 = (X2RX′2)
−1

X2RY
′

Σ̂ =
Y
[
R−RX′2 (X2RX′2)

−1
X2R

]
Y ′

n− p1 − p2

Under the full model, the analysts computes these estimates with Y replaced by the jth syn-

thetic dataset Vj to produce a set of 3M estimates

{(
B̂1Aj , B̂2Aj , Σ̂Aj

) ∣∣∣∣j = 1, . . . ,M

}
.

Analyst Model Assumptions and Estimates

The analyst is interested in estimating B1 only. When the analyst uses the full model the

estimates used in the combination rules of Reiter (2005) are

qj = B̂1Aj = (X1X
′
1)
−1
X1

[
I −X ′2 (X2RX

′
2)
−1
X2R

]
V ′j

uj = Σ̂j ⊗
[
(X1X

′
1)
−1

+LML′
]

where

Σ̂j =
Vj
[
R−RX ′2 (X2RX

′
2)
−1X2R

]
V ′j

n− p1 − p2

When the analyst uses the reduced model the estimates used in the combination rules

of Reiter (2005) are

qj = (X1X
′
1)
−1
X1V

′
j

uj = Σ̂j ⊗ (X1X
′
1)
−1

where

Σ̂j =
Vj
[
I −X ′1 (X1X

′
1)
−1X1

]
V ′j

n− p1

We will derive, for each case, the expectation of the covariance matrix estimate of

Reiter (2005) for B1 in the case of multiply imputed synthetic data under PPS. For this,
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we denote by qj an estimate of B1 using the jth synthetic data set and by uj an estimate

of the covariance matrix of qj, for j = 1, . . . ,M .

With this notation, we further define (Reiter, 2005):

qM =
1

M

M∑
j=1

qj

bM =
1

M − 1

M∑
j=1

(qj − qM) (qj − qM)′ =

∑M
j=1 qjq

′
j − 1

M

∑M
i=1

∑M
j=1 qiq

′
j

M − 1

uM =
1

M

M∑
j=1

uj

TM = uM +
bM

M

where TM is the covariance matrix estimate of Reiter (2005). If q1, . . . , qM are identically

distributed, we have

E [(M − 1) bM ] =
M∑
i=1

E (qiq
′
i)−

∑M
i=1

∑M
j=1 E

(
qiq
′
j

)
M

= M Var (q1)−
1

M
[M Var (q1) +M(M − 1)Cov (q1, q2)]

= M Var (q1)− Var (q1)− (M − 1)Cov (q1, q2)

= (M − 1) [Var (q1)− Cov (q1, q2)]

Under the full model in the case m = 1, Seber and Lee (2003) give the covariance matrix

Var

 B̂1

B̂2

 = Σ⊗ (XX ′)
−1

= Σ⊗

 (X1X
′
1)
−1 +LML′ −LM

−ML′ M


Thus,

X ′ (XX ′)
−1
X = X ′1 (X1X

′
1)
−1
X ′1+X ′1LML′X1−X ′1LMX2−X ′2ML′X1+X ′2MX2
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If the analyst instead uses our approach as presented in Section 3, then the point

estimator of B1 is also q̄M . Under our proposed 1st procedure of Section 3, the analysts

estimate of the covariance matrix of the point estimator of B1 will be M+1
M
ūM .

Inference on B1 under the eight Overspecification/Underspecification

Scenarios

Case 1: FFF

The analysts aggregated estimate of B1 is B̂1A =
∑M

j=1 B̂1Aj

M
which is unbiased since:

E
(
B̂1Aj

)
= E

[
E
(
B̂1Aj

∣∣∣B̂1

)]
= E

(
B̂1

)
= B1

for j = 1, . . . ,M . By similar arguments the analysts estimate is also unbiased in Cases 5,

6, 7 and 8.

Variance of B̂1A

Using the results of Seber and Lee (2003), we have:

Var

(
M∑
j=1

B̂1Aj

)
= E

[
Var

(
M∑
j=1

B̂1Aj

∣∣∣∣B̂1 , B̂2 , Σ̂

)]
+ Var

[
E

(
M∑
j=1

B̂1Aj

∣∣∣∣B̂1 , B̂2 , Σ̂

)]
= E

{
MΣ̂⊗

[
(X1X

′
1)
−1

+ LML′
]}

+ Var
(
MB̂1

)
= MΣ⊗

[
(X1X

′
1)
−1

+ LML′
]

+M2Σ⊗
[
(X1X

′
1)
−1

+ LML′
]

Thus, Var
(
B̂1A

)
=
(
1 + 1

M

)
Σ⊗

[
(X1X

′
1)
−1 + LML′

]
.
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Expectation of TM

We first observe

Var (qj) = Var
(
B̂1Aj

)
= E

[
Var

(
B̂1Aj

∣∣∣B̂1 , B̂2 , Σ̂
)]

+ Var
[
E
(
B̂1Aj

∣∣∣B̂1 , B̂2 , Σ̂
)]

= E
{

Σ̂⊗
[
(X1X

′
1)
−1

+LML′
]}

+ Var
(
B̂1

)
= Σ⊗

[
(X1X

′
1)
−1

+LML′
]

+ Σ⊗
[
(X1X

′
1)
−1

+LML′
]

= 2Σ⊗
[
(X1X

′
1)
−1

+LML′
]

and for i 6= j

E
(
qiq
′
j

)
= E

[
E
(
B̂1AiB̂

′
1Aj

∣∣∣B̂1 , B̂2 , Σ̂
)]

= E
[
E
(
B̂1Ai

∣∣∣B̂1 , B̂2 , Σ̂
)
· E
(
B̂′1Aj

∣∣∣B̂1 , B̂2 , Σ̂
)]

= E
(
B̂1B̂

′
1

)
= Var

(
B̂1

)
+ vec

[
E
(
B̂1

)]
· vec

[
E
(
B̂1

)]′
= Σ⊗

[
(X1X

′
1)
−1

+LML′
]

+ vec (B1) · vec (B1)
′

Thus,

E [(M − 1) bM ] = (M − 1) [Var (q1)− Cov (q1, q2)] = (M − 1)Σ⊗
[
(X1X

′
1)
−1

+LML′
]

In this case uj = Σ̂Aj ⊗
[
(X1X

′
1)
−1 + LML′

]
where

Σ̂Aj =
Vj

[
R−RX′2 (X2RX′2)

−1
X2R

]
V ′j

n− p1 − p2

and it can be shown that E
(
Σ̂Aj

)
= Σ, so that E (uM) = Σ ⊗

[
(X1X

′
1)
−1 + LML′

]
.

Finally, this yields

E (TM) = E

(
bM
M

+ uM

)
=

(
1 +

1

M

)
Σ⊗

[
(X1X

′
1)
−1

+ LML′
]
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Cases 2, 3 and 4: FFR, FRF and FRR

In Case 2, the analysts aggregated estimate is B̂1A = (X1X
′
1)−1 X1

(∑M
j=1 V

′
j

M

)
with expec-

tation B1 + LB2 since:

E (Vj) = E
[
E
(
Vj

∣∣∣B̂1 , B̂2 , Σ̂
)]

= E
(
B̂′1X1 + B̂′2X2

)
= B′1X1 + B′2X2

The estimators in Cases 3 and 4 are biased by similar arguments, so we do not pursue these

three cases any further.

Case 5: RFF

Remark. Case 5 and Case 1 differ only in their assumptions about the value of B2 in the

data model, which effect neither the variance of the data nor of the imputers estimate of

(B1, B2) nor of the analysts estimate of B1. Thus, all expressions in Case 5 are identical

to those in Case 1. The estimates of Reiter (2005) also inherit this invariance to the data

model since they are composed of similarly invariant estimates.

Case 6: RFR

Variance of B̂1A

By arguments similar to that of Case 1 above, we have

Var

(
M∑
j=1

V ′j

)
= M Σ⊗ In +M2 Var

(
B̂′1X1 + B̂′2X2

)
= M Σ⊗ In +M2 Σ⊗X ′ (XX ′)−1X

= M Σ⊗ In +M2Σ⊗
[
X′1 (X1X

′
1)
−1

X1 −X′1LMX2 −X′2ML′X1 + X′2MX2 + X′1LML′X1

]
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Thus,

Var
(
B̂1A

)
= Var

[
(X1X

′
1)
−1

X1

(∑M
j=1 V

′
j

M

)]
=

1

M
Σ⊗ (X1X

′
1)
−1

+ Σ⊗ (X1X
′
1)
−1
X1X

′ (XX ′)
−1
XX ′1 (X1X

′
1)
−1

=
1

M
Σ⊗ (X1X

′
1)
−1

+ Σ⊗ (X1X
′
1)
−1

=

(
1 +

1

M

)
Σ⊗ (X1X

′
1)
−1

Expectation of TM

By arguments similar to that of Case 1 above, we have

Var (qj) = Var
[
(X1X

′
1)
−1

X1V
′
j

]
= E

{
Var

[
(X1X

′
1)
−1

X1V
′
j

∣∣∣B̂1 , B̂2 , Σ̂
]}

+ Var
{

E
[
(X1X

′
1)
−1

X1V
′
j

∣∣∣B̂1 , B̂2 , Σ̂
]}

= E
[
Σ̂⊗ (X1X

′
1)
−1
]

+ Var

( I L
) B̂1

B̂2

 = Σ⊗ (X1X
′
1)
−1

+ Σ⊗ (X1X
′
1)
−1

= 2Σ⊗ (X1X
′
1)
−1

and for i 6= j

E
(
qiq
′
j

)
= E

[
E
(
B̂1AiB̂

′
1Aj

∣∣∣B̂1 , B̂2 , Σ̂
)]

= E
[
E
(
B̂1Ai

∣∣∣B̂1 , B̂2 , Σ̂
)
· E
(
B̂′1Aj

∣∣∣B̂1 , B̂2 , Σ̂
)]

= E

[(
B̂1 +LB̂2

)(
B̂1 +LB̂2

)′]
= Var

(
B̂1 +LB̂2

)
+ vec

[
E
(
B̂1 +LB̂2

)]
· vec

[
E
(
B̂1 +LB̂2

)]′
= Var

( I L
) B̂1

B̂2

+ vec (B1) · vec (B1)
′ = Σ⊗ (X1X

′
1)
−1

+ vec (B1) · vec (B1)
′

Thus,

E [(M − 1) bM ] = (M − 1) [Var (q1)− Cov (q1, q2)] = (M − 1)Σ⊗ (X1X
′
1)
−1
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In this case uj = Σ̂Aj⊗(X1X
′
1)
−1 where Σ̂Aj =

VjRV
′
j

n−p1−p2 and it can be shown that E
(
Σ̂Aj

)
=(

1 + p2
n−p1

)
Σ, so that E (uM) =

(
1 + p2

n−p1

)
Σ⊗ (X1X

′
1)
−1. Finally, this yields

E (TM) = E

(
bM
M

+ uM

)
=

(
1 +

1

M
+

p2
n− p1

)
Σ⊗ (X1X

′
1)
−1

Case 7: RRF

Variance of B̂1A

By arguments similar to that of Case 1 above, we have

Var

(
M∑
j=1

V ′j

)
= E

[
Var

(
M∑
j=1

V ′j

∣∣∣B̂1 , Σ̂

)]
+ Var

[
E

(
M∑
j=1

V ′j

∣∣∣B̂1 , Σ̂

)]
= M E

(
Σ̂
)
⊗ In +M2 Var

(
X′1B̂1

)
= M Σ⊗ In +M2 Σ⊗X ′1 (X1X

′
1)
−1
X1

Therefore,

Var
(
B̂1A

)
= Var

{
(X1X

′
1)
−1

X1

[
I−X′2 (X2RX′2)

−1
X2R

] M∑
j=1

V ′j /M

}

=
1

M
Σ⊗

[
(X1X

′
1)
−1

+ LML′
]

+ Σ⊗ (X1X
′
1)
−1

= (1 +
1

M
)Σ⊗ (X1X

′
1)
−1 +

1

M
Σ⊗ LML′
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Expectation of TM

By arguments similar to those of Case 1, we have

Var (qj) = Var
(
B̂1Aj

)
= E

[
Var

(
B̂1Aj

∣∣∣B̂1 , B̂2 , Σ̂
)]

+ Var
[
E
(
B̂1Aj

∣∣∣B̂1 , B̂2 , Σ̂
)]

= E
(
Σ̂
)
⊗
[
(X1X

′
1)
−1

+LML′
]

+ Var
(
B̂1

)
= Σ⊗

[
(X1X

′
1)
−1

+LML′
]

+ Σ⊗ (X1X
′
1)
−1

= Σ⊗
[
2 (X1X

′
1)
−1

+LML′
]

and for i 6= j

E
(
qiq
′
j

)
= E

[
E
(
B̂1AiB̂

′
1Aj

∣∣∣B̂1 , B̂2 , Σ̂
)]

= E
[
E
(
B̂1Ai

∣∣∣B̂1 , B̂2 , Σ̂
)
· E
(
B̂′1Aj

∣∣∣B̂1 , B̂2 , Σ̂
)]

= E
(
B̂1B̂

′
1

)
= Var

(
B̂1

)
+ vec

[
E
(
B̂1

)]
· vec

[
E
(
B̂1

)]′
= Σ⊗ (X1X

′
1)
−1 + vec (B1) · vec (B1)

′

Thus,

E [(M − 1)bM ] = (M − 1)[Var (q1)− Cov (q1, q2)] = (M − 1)Σ⊗
[
(X1X

′
1)
−1

+LML′
]

In this case, uj =
[
(X1X

′
1)
−1 + LML′

]
⊗ Σ̂Aj, where Σ̂Aj =

Vj[R−RX′2(X2RX′2)
−1X2R]V ′j

n−p1−p2 . It

can be shown that E
(
Σ̂Aj

)
= Σ, for j = 1, . . . ,M , so that E (uM) = Σ⊗

[
(X1X

′
1)
−1 +LML′

]
.

Finally, we have

E (TM) = E

(
bM
M

+ uM

)
=

(
1 +

1

M

)
Σ⊗

[
(X1X

′
1)
−1

+LML′
]
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Case 8: RRR

Variance of B̂1A

By arguments similar to those above, we have

Var

(
M∑
j=1

B̂1Aj

)
= E

[
Var

(
M∑
j=1

B̂1Aj

∣∣∣∣B̂1 , Σ̂

)]
+ Var

[
E

(
M∑
j=1

B̂1Aj

∣∣∣∣B̂1 , Σ̂

)]
= M2 Var

(
B̂1

)
+M E

(
Σ̂
)
⊗ (X1X

′
1)
−1

= M2 Σ⊗ (X1X
′
1)
−1

+M Σ⊗ (X1X
′
1)
−1

so that Var
(
B̂1A

)
=
(
1 + 1

M

)
Σ⊗ (X1X

′
1)
−1.

Expectation of TM

By arguments similar to those above, it is clear that Var (qj) = 2Σ ⊗ (X1X
′
1)
−1 and

E
(
qiq
′
j

)
= Σ⊗ (X1X

′
1)
−1. Then,

E [(M − 1)bM ] = (M − 1)Σ⊗ (X1X
′
1)
−1

In this case, uj = ΣAj ⊗ (X1X
′
1)
−1, where Σ̂Aj =

VjRV
′
j

n−p1 . It can be shown that E
(
Σ̂Aj

)
=

Σ, for j = 1, . . . ,M , so that E (uM) = Σ⊗ (X1X
′
1)
−1. Finally, we have

E (TM) = E

(
bM
M

+ uM

)
=

(
1 +

1

M

)
Σ⊗ (X1X

′
1)
−1

Summary

The following summarizes the results derived under the cases 1,5,6,7,8 where the point

estimator is unbiased.

Variance of point estimator and expected value of Reiter’s (2005) variance

estimator:
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Case Var
(
B̂1A

)
E
[
V̂ar

(
B̂1A

)]
FFF

(
1 + 1

M

)
Σ⊗

[
(X1X

′
1)
−1 + LML′

] (
1 + 1

M

)
Σ⊗

[
(X1X

′
1)
−1 + LML′

]
RFF

(
1 + 1

M

)
Σ⊗

[
(X1X

′
1)
−1 + LML′

] (
1 + 1

M

)
Σ⊗

[
(X1X

′
1)
−1 + LML′

]
RFR

(
1 + 1

M

)
Σ⊗ (X1X

′
1)
−1

(
1 + 1

M
+ p2

n−p1

)
Σ⊗ (X1X

′
1)
−1

RRF (1 + 1
M

)Σ⊗ (X1X
′
1)
−1 + 1

M
Σ⊗ LML′

(
1 + 1

M

)
Σ⊗

[
(X1X

′
1)
−1 +LML′

]
RRR

(
1 + 1

M

)
Σ⊗ (X1X

′
1)
−1 (

1 + 1
M

)
Σ⊗ (X1X

′
1)
−1

Variance of point estimator and expected value of variance estimator from our

1st procedure:

Case Var
(
B̂1A

)
E
[
V̂ar

(
B̂1A

)]
FFF

(
1 + 1

M

)
Σ⊗

[
(X1X

′
1)
−1 + LML′

] (
1 + 1

M

)
Σ⊗

[
(X1X

′
1)
−1 + LML′

]
RFF

(
1 + 1

M

)
Σ⊗

[
(X1X

′
1)
−1 + LML′

] (
1 + 1

M

)
Σ⊗

[
(X1X

′
1)
−1 + LML′

]
RFR

(
1 + 1

M

)
Σ⊗ (X1X

′
1)
−1 (

1 + 1
M

) (
1 + p2

n−p1

)
Σ⊗ (X1X

′
1)
−1

RRF (1 + 1
M

)Σ⊗ (X1X
′
1)
−1 + 1

M
Σ⊗ LML′

(
1 + 1

M

)
Σ⊗

[
(X1X

′
1)
−1 +LML′

]
RRR

(
1 + 1

M

)
Σ⊗ (X1X

′
1)
−1 (

1 + 1
M

)
Σ⊗ (X1X

′
1)
−1

We observe that in all the cases where the analyst’s estimate of B1 is unbiased, the

covariance matrix estimate of Reiter (2005), and of our approach is expected to over-

estimate the covariance. This is consistent with what was demonstrated in Klein and

Sinha (2016).

6.3 Data analyst’s regression is something other than sensitive

variables on non-sensitive variables

Upon observing the released synthetic data, there are a multitude of regression models that

may be of interest to the data analyst. For example, the data analyst may be interested in

the regression of the nonsensitive variables on the sensitive variables, or in the regression of

a combination of sensitive and nonsensitive variables on another combination of sensitive
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and nonsensitive variables. To derive the methodology in Sections 2 and 3, we assumed

that the data analyst’s goal is to use the released synthetic data to draw inference on the

regression coefficients in the regression of the sensitive variables, given the nonsensitive

variables. We assumed that this model is a multivariate normal model, and it is also

the data generation model, and the imputation model. In this section we conduct some

simulation studies to evaluate the performance of our methodology under several different

cases of the data analyst’s choice of a regression model.

To conduct this analysis, let

y1
x1

 , . . . ,

yn
xn

 denote the original data where y1, . . . ,yn

are sensitive while x1, . . . ,xn are not sensitive. Assume for simplicity that yi = (y1i, y2i)
′

and xi = (x1i, x2i)
′ for i = 1, . . . , n. Suppose the data generation model isy1
x1

 , . . . ,

yn
xn

 ∼ iid ∼ N4

µy
µx

 ,

Σyy Σyx

Σxy Σxx

 , (21)

where

µy =

µy1
µy2

 ,µx =

µx1
µx2

 ,

Σyy =

σy1y1 σy1y2

σy1y2 σy2y2

 ,Σyx =

σy1x1 σy1x2

σy2x1 σy2x2

 ,Σxy =

σy1x1 σy2x1

σy1x2 σy2x2

 ,Σxx =

σx1x1 σx1x2

σx1x2 σx2x2

 .

Under model (21) it follows that

(y1, . . . ,yn)|(x1, . . . ,xn) are independently distributed such that

yi|(x1, . . . ,xn) ∼ N2

µy + ΣyxΣ
−1
xx (xi − µx) = Ω′1

 1

xi

 , Σyy·x

 for i = 1, . . . , n,
(22)

where

Ω′1 =
(
µy −ΣyxΣ

−1
xxµx, ΣyxΣ

−1
xx

)
2×3

, Σyy·x = Σyy −ΣyxΣ
−1
xxΣxy.
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Because y1, . . . ,yn are sensitive, while x1, . . . ,xn are nonsensitive, only the y-variables will

be synthesized, and the imputation model is the conditional distribution of (y1, . . . ,yn)

given (x1, . . . ,xn) as displayed in (22). Because (22) is a multivariate linear regression

model, we assume that v1, . . . ,vn, the synthetic version of y1, . . . ,yn, are generated via

the sampling in equation (5). In case of multiply imputed synthetic data, this sampling is

repeated independently M > 1 times to get v
(j)
1 , . . . ,v

(j)
n for j = 1, . . . ,M . The released

data are of the form

v1
x1

 , . . . ,

vn
xn

 in the case of singly imputed synthetic data, orv(j)1

x1

 , . . . ,

v(j)n
xn

 for j = 1, . . . ,M in case of multiply imputed synthetic data. We

consider the following eight cases of the data analysis model.

Case 1. Regression of (sensitive) on (nonsensitive). Suppose the analysis model is the

conditional distribution of {yi, i = 1, . . . , n} given {xi, i = 1, . . . , n}. In this case the

analysis model is given in equation (22), and is the same model as used for imputation.

Case 2. Regression of (sensitive) on (sensitive). Suppose the analysis model is the con-

ditional distribution of {y1i, i = 1, . . . , n} given {y2i, i = 1, . . . , n}. In the conditional

distribution of y11, . . . , y1n given y21, . . . , y2n, the random variables y11, . . . , y1n are inde-

pendently distributed such that

y1i ∼ N

µy1 +
σy1y2
σy2y2

(y2i − µy2) = Ω′2

 1

y2i

 , σy1y1·y2


for i = 1, . . . , n, where

Ω′2 =
(
µy1 −

σy1y2
σy2y2

µy2 ,
σy1y2
σy2y2

)
1×2

, σy1y1·y2 = σy1y1 −
σ2
y1y2

σy2y2
.

Case 3. Regression of (nonsensitive) on (sensitive). Suppose the analysis model is the

conditional distribution of {xi, i = 1, . . . , n} given {yi, i = 1, . . . , n}. In the conditional dis-

tribution of x1, . . . ,xn given y1, . . . ,yn, the random variables x1, . . . ,xn are independently
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distributed such that

xi ∼ N2

µx + ΣxyΣ
−1
yy (yi − µy) = Ω′3

 1

yi

 , Σxx·y


for i = 1, . . . , n, where

Ω′3 =
(
µx −ΣxyΣ

−1
yy µy, ΣxyΣ

−1
yy

)
2×3

, Σxx·y = Σxx −ΣxyΣ
−1
yy Σyx.

Case 4. Regression of (sensitive) on (sensitive and nonsensitive). Suppose the analysis

model is the conditional distribution of {y1i, i = 1, . . . , n} given {(y2i,xi), i = 1, . . . , n}. In

the conditional distribution of y11, . . . , y1n given

y21
x1

 , . . . ,

y2n
xn

, the random variables

y11, . . . , y1n are independently distributed such that

y1i ∼ N

µy1 + Σ(y1)(y2,x)Σ
−1
(y2,x)(y2,x)

{(y2i,x′i)′ − (µy2 ,µ
′
x)
′} = Ω′4


1

y2i

xi

 ,Σ(y1,y1)·(y2,x)


for i = 1, . . . , n, where

Σ(y1)(y2,x) = (σy1y2 , σy1x1 , σy1x2), Σ(y2,x)(y2,x) =


σy2y2 σy2x1 σy2x2

σy2x1 σx1x1 σx1x2

σy2x2 σx1x2 σx2x2

 ,

Ω′4 =
(
µy1 −Σ(y1)(y2,x)Σ

−1
(y2,x)(y2,x)

(µy2 ,µ
′
x)
′, Σ(y1)(y2,x)Σ

−1
(y2,x)(y2,x)

)
1×4

.

Σ(y1,y1)·(y2,x) = σy1y1 −Σ(y1)(y2,x)Σ
−1
(y2,x)(y2,x)

Σ′(y1)(y2,x).

Case 5. Regression of (nonsensitive) on (sensitive and nonsensitive). Suppose the analysis

model is the conditional distribution of {x1i, i = 1, . . . , n} given {(x2i,yi), i = 1, . . . , n}. In

the conditional distribution of x11, . . . , x1n given

x21
y1

 , . . . ,

x2n
yn

, the random variables
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x11, . . . , x1n are independently distributed such that

x1i ∼ N

µx1 + Σ(x1)(x2,y)Σ
−1
(x2,y)(x2,y)

{
(x2i,y

′
i)
′ − (µx2 ,µ

′
y)
′} = Ω′5


1

x2i

yi

 ,Σ(x1,x1)·(x2,y)


for i = 1, . . . , n, where

Σ(x1)(x2,y) = (σx1x2 , σy1x1 , σy2x1), Σ(x2,y)(x2,y) =


σx2x2 σy1x2 σy2x2

σy1x2 σy1y1 σy1y2

σy2x2 σy1y2 σy2y2

 ,

Ω′5 =
(
µx1 −Σ(x1)(x2,y)Σ

−1
(x2,y)(x2,y)

(µx2 ,µ
′
y)
′, Σ(x1)(x2,y)Σ

−1
(x2,y)(x2,y)

)
1×4

.

Σ(x1,x1)·(x2,y) = σx1x1 −Σ(x1)(x2,y)Σ
−1
(x2,y)(x2,y)

Σ′(x1)(x2,y).

Case 6. Regression of (sensitive and nonsensitive) on (sensitive). Suppose the analysis

model is the conditional distribution of {(y1i, x1i), i = 1, . . . , n} given {y2i, i = 1, . . . , n}. In

the conditional distribution of

y11
x11

 , . . . ,

y1n
x1n

 given y21, . . . , y2n, the random vectors

(y11, x11)
′, . . . , (y1n, x1n)′ are independently distributed such thaty1i

x1i

 ∼ N2


µy1
µx1

+ Σ(y1,x1)(y2)σ
−1
y2y2

[y2i − µy2 ] = Ω′6

 1

y2i

 ,Σ(y1,x1)(y1,x1)·(y2)


for i = 1, . . . , n, where

Σ(y1,x1)(y2) = (σy1y2 , σy2x1)
′,

Ω′6 =
(

(µy1 , µx1)
′ −Σ(y1x1)(y2)σ

−1
y2y2

µy2 , Σ(y1x1)(y2)σ
−1
y2y2

)
2×2

.

Σ(y1,x1)(y1,x1)·y2 =

σy1y1 σy1x1

σy1x1 σx1x1

−Σ(y1,x1)(y2)σ
−1
y2y2

Σ′(y1,x1)(y2).
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Case 7. Regression of (sensitive and nonsensitive) on (nonsensitive). Suppose the analysis

model is the conditional distribution of {(y1i, x1i)i = 1, . . . , n} given {x2i, i = 1, . . . , n}. In

the conditional distribution of

y11
x11

 , . . . ,

y1n
x1n

 given x21, . . . , x2n, the random vectors

(y11, x11)
′, . . . , (y1n, x1n)′ are independently distributed such thaty1i

x1i

 ∼ N2


µy1
µx1

+ Σ(y1,x1)(x2)σ
−1
x2x2

[x2i − µx2 ] = Ω′7

 1

x2i

 ,Σ(y1,x1)(y1,x1)·x2


for i = 1, . . . , n, where

Σ(y1,x1)(x2) = (σy1x2 , σx1x2)
′,

Ω′7 =
(

(µy1 , µx1)
′ −Σ(y1,x1)(x2)σ

−1
x2x2

µx2 , Σ(y1,x1)(x2)σ
−1
x2x2

)
2×2

.

Σ(y1,x1)(y1,x1)·x2 =

σy1y1 σy1x1

σy1x1 σx1x1

−Σ(y1,x1)(x2)σ
−1
x2x2

Σ′(y1x1)(x2).

Case 8. Regression of (nonsensitive and sensitive) on (nonsensitive and sensitive). Sup-

pose the analysis model is the conditional distribution of {(y1i, x1i), i = 1, . . . , n} given

{(y2i, x2i), i = 1, . . . , n}. In the conditional distribution of (y11, x11)
′ . . . , (y1n, x1n)′ given

(y21, x21)
′, . . . , (y2n, x2n)′, the random vectors (y11, x11)

′, . . . , (y1n, x1n)′ are independently

distributed such thaty1i
x1i



∼ N2


µy1
µx1

+ Σ(y1,x1)(y2,x2)Σ
−1
(y2,x2)(y2,x2)

y2i − µy2
x2i − µx2

 = Ω′8


1

y2i

x2i

 ,Σ(y1,x1)(y1,x1)·(y2,x2)


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for i = 1, . . . , n, where

Σ(y1,x1)(y2,x2) =

σy1y2 σy1x2

σy2x1 σx1x2

 , Σ(y2,x2)(y2,x2) =

σy2y2 σy2x2

σy2x2 σx2x2


Ω′8 =

(
(µy1 , µx1)

′ −Σ(y1,x1)(y2,x2)Σ
−1
(y2,x2)(y2,x2)

(µy2 , µx2)
′, Σ(y1,x1)(y2,x2)Σ

−1
(y2x2)(y2x2)

)
2×3

.

Σ(y1,x1)(y1,x1)·(y2x2) =

σy1y1 σy1x1

σy1x1 σx1x1

−Σ(y1,x1)(y2,x2)Σ
−1
(y2,x2)(y2,x2)

Σ′(y1,x1)(y2,x2).

In the following simulation results, we show the coverage of the data analyst’s confi-

dence region for the regression parameters Ω1, . . . ,Ω8 in each of the Cases 1-8. Although

the methodology of Sections 2 and 3 was not designed for the range of scenarios in Cases

1-8, our goal is to evaluate the performance of these methods in these cases. Thus we

assume that the data analyst constructs a point estimate and confidence region for some

desired regression parameters using the methodology in Sections 2 and 3, with the defini-

tions of X and V appropriately modified to reflect the analyst’s choice of the regression

model. For example, in Case 8 the data analyst is interested in the regression model

where {(y1i, x1i), i = 1, . . . , n} are the response variables and {(y2i, x2i), i = 1, . . . , n} are

the regressor variables. Thus in Case 8 the target parameter is Ω8, and upon observing

the released data, we assume the analyst constructs a confidence region for Ω8 using the

methodology of Sections 2 and 3 treating

v21 v22 · · · v2n

x21 x22 · · · x2n

 as the X matrix, andv11 v12 · · · v1n

x11 x12 · · · x1n

 as the V matrix. For the sake of comparison, we also show the

coverage of the confidence region obtained using the methodology of Reiter (2005) in each

case. Table 7 provides Monte Carlo estimates of ||E(Ω̂j) − Ωj||1 for each of the target

parameters Ω1, . . . ,Ω8 in Cases 1-8. Table 8 provides Monte Carlo estimates of confidence

region coverage probability for each of the target parameters in Ω1, . . . ,Ω8 in Cases 1-8 .
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To conduct the simulation study, we set the model parameters as follows:

µx =

1

2

 , µy =

3

4

 ,


σy1y1 σy1y2 σy1x1 σy1x2

σy1y2 σy2y2 σy2x1 σy2x2

σy1x1 σy2x1 σx1x1 σx1x2

σy1x2 σy2x2 σx1x2 σx2x2

 =


1 1.5 0.1 0.2

1.5 3 0.1 0.3

0.1 0.1 3 1.6

0.2 0.3 1.6 1

 .

For the simulation study we take n = 500 which should be sufficiently large so that the

procedures of Reiter (2005) can also be applied in each case. The results of Table 7

indicate that the point estimator of the regression parameter matrix (which for multiple

imputation is the same under our 1st procedure, 2nd procedure, and the procedure of

Reiter (2005)) is approximately unbiased in this scenario. In Case 1 the data analysis

model is the regression of the sensitive variables on the non-sensitive variables, and this

data analysis model is the one that was assumed to derive the procedures in Sections 2

and 3. However, the assumptions of Sections 2 and 3 do not quite hold in Case 1, because

in Case 1 the regressor variables are random, while in Sections 2 and 3 the regressor

variables are fixed. Nonetheless, we observe in Table 8 that the our proposed procedures,

as well as the procedures of Reiter (2005) for multiple imputation, give confidence regions

whose coverage is approximately equal to the nominal value of 0.95. In Cases 2-8 the

data analysis regression is something other than the regression of the sensitive variables

on the non-sensitive variables, and here we observe in Table 8 that the coverage of our

proposed confidence regions tends to be greater than the nominal value. An exception is

Case 5 where our 2nd proposed procedure for multiple imputation has coverage less than

the nominal value. On the other hand, in each of the Cases 1-8, we observe in Table 8 that

the confidence regions of Reiter (2005) have coverage probability approximately equal to

the nominal value of 0.95.
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7 Concluding Remarks

The data analysis methodology of Reiter (2003), Reiter (2005) and Raghunathan et al.

(2003) are asymptotic in nature and can only be used when multiply imputed synthetic

datasets are released, and, as such, are not meant for analysis of singly imputed synthetic

data.

In this paper the authors derived likelihood-based exact inference for the single im-

putation case and also two exact likelihood-based solutions are offered for the case when

multiple synthetic datasets are released. Inference procedures were obtained for the matrix

regression coefficients matrix under a Multivariate Linear Regression Model when synthetic

data are generated via Plug-in Sampling. The simulation studies showed that the method-

ologies developed lead to confidence sets with the expected level of confidence, even for

small sample sizes, both for single and multiple imputation. Our simulations also reveal

that as the number of synthetic datasets releases increase, the inference derived from syn-

thetic dataset comes closer to the one based on the original data, but of course at the

expense of compromising privacy, namely by increasing the disclosure risk. It turns out

that the second procedure proposed for multiple synthetic data has a better performance

than the first one for small sample sizes, and their performances are nearly the same for

larger sample sizes.

It will be interesting to compare the performance of our two exact test procedures with

the asymptotic procedure of Reiter (2005) for a real large dataset. It is expected that

all three methods will provide similar performances. Moreover, the adapted procedure of

Reiter (2005) is the only method to be used in the multiple imputation setting when the

number of tested regressors is smaller than the number of response variables.
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Table 5: Average coverage for B and AB when error distribution is multivariate t

n ν

M = 1 M = 2 M = 5 M = 10 M = 20

vec(AB) AB AB vec(AB) AB AB vec(AB) AB AB vec(AB) AB AB

(1) (2) (1) (2) (1) (2) (1) (2)

10

3 0.944 0.822 0.944 0.945 0.742 0.946 0.944 0.735 0.944 0.944 0.739 0.943 0.943
5 0.946 0.828 0.944 0.947 0.743 0.948 0.946 0.735 0.945 0.946 0.742 0.945 0.946
10 0.951 0.830 0.951 0.949 0.753 0.953 0.950 0.751 0.950 0.950 0.750 0.951 0.951
15 0.950 0.828 0.951 0.950 0.751 0.950 0.949 0.744 0.949 0.950 0.747 0.950 0.948
20 0.950 0.827 0.947 0.948 0.752 0.948 0.948 0.743 0.948 0.947 0.747 0.948 0.948

20

3 0.952 0.925 0.953 0.951 0.881 0.951 0.951 0.877 0.951 0.954 0.879 0.952 0.952
5 0.948 0.922 0.948 0.947 0.881 0.947 0.948 0.872 0.950 0.951 0.874 0.951 0.950
10 0.951 0.921 0.952 0.950 0.876 0.948 0.948 0.867 0.948 0.948 0.873 0.948 0.947
15 0.952 0.926 0.952 0.950 0.880 0.949 0.949 0.879 0.951 0.952 0.879 0.953 0.953
20 0.951 0.925 0.951 0.951 0.876 0.951 0.950 0.874 0.950 0.952 0.875 0.952 0.951

50

3 0.948 0.960 0.951 0.952 0.931 0.952 0.951 0.930 0.954 0.953 0.932 0.953 0.952
5 0.948 0.953 0.947 0.948 0.927 0.951 0.950 0.926 0.950 0.949 0.929 0.951 0.950
10 0.951 0.952 0.949 0.950 0.925 0.951 0.950 0.921 0.949 0.948 0.924 0.950 0.948
15 0.950 0.950 0.949 0.950 0.928 0.950 0.949 0.924 0.952 0.951 0.924 0.950 0.949
20 0.949 0.956 0.952 0.953 0.929 0.955 0.955 0.924 0.952 0.950 0.929 0.952 0.951

100

3 0.950 0.963 0.950 0.951 0.940 0.950 0.952 0.938 0.953 0.953 0.940 0.952 0.951
5 0.952 0.962 0.950 0.950 0.938 0.949 0.951 0.938 0.950 0.950 0.937 0.949 0.947
10 0.949 0.961 0.950 0.951 0.939 0.951 0.952 0.933 0.952 0.953 0.938 0.950 0.948
15 0.951 0.963 0.949 0.949 0.944 0.951 0.952 0.940 0.949 0.950 0.944 0.951 0.950
20 0.948 0.965 0.947 0.947 0.944 0.954 0.955 0.942 0.951 0.952 0.942 0.952 0.951

200

3 0.950 0.966 0.948 0.947 0.943 0.951 0.951 0.940 0.949 0.949 0.944 0.948 0.949
5 0.954 0.965 0.950 0.948 0.943 0.946 0.946 0.939 0.948 0.948 0.943 0.946 0.947
10 0.952 0.963 0.950 0.948 0.947 0.948 0.948 0.942 0.947 0.947 0.942 0.947 0.948
15 0.950 0.963 0.950 0.949 0.947 0.951 0.951 0.942 0.950 0.950 0.944 0.947 0.948
20 0.948 0.964 0.951 0.950 0.944 0.951 0.952 0.939 0.950 0.950 0.942 0.949 0.950

(a) Average coverage for B

n ν

M = 1 M = 2 M = 5 M = 10 M = 20

vec(AB) AB AB vec(AB) AB AB vec(AB) AB AB vec(AB) AB AB

(1) (2) (1) (2) (1) (2) (1) (2)

10

3 0.943 0.956 0.944 0.944 0.777 0.945 0.944 0.776 0.944 0.944 0.772 0.943 0.943
5 0.944 0.958 0.946 0.946 0.778 0.945 0.945 0.781 0.944 0.944 0.776 0.942 0.943
10 0.949 0.965 0.948 0.949 0.790 0.951 0.952 0.797 0.950 0.949 0.787 0.949 0.950
15 0.952 0.967 0.951 0.951 0.798 0.953 0.953 0.799 0.950 0.950 0.789 0.951 0.951
20 0.949 0.962 0.951 0.949 0.791 0.949 0.948 0.794 0.948 0.948 0.787 0.948 0.949

20

3 0.956 0.996 0.949 0.950 0.898 0.954 0.952 0.896 0.949 0.950 0.894 0.952 0.952
5 0.949 0.995 0.950 0.950 0.896 0.953 0.952 0.896 0.950 0.951 0.891 0.949 0.949
10 0.950 0.994 0.950 0.950 0.892 0.951 0.950 0.889 0.945 0.947 0.886 0.948 0.948
15 0.952 0.996 0.950 0.953 0.896 0.952 0.950 0.899 0.948 0.949 0.896 0.949 0.949
20 0.950 0.996 0.952 0.954 0.892 0.949 0.949 0.894 0.950 0.950 0.891 0.951 0.952

50

3 0.948 0.999 0.950 0.950 0.933 0.952 0.952 0.935 0.953 0.952 0.933 0.954 0.952
5 0.949 0.999 0.950 0.951 0.934 0.952 0.951 0.932 0.952 0.950 0.933 0.953 0.952
10 0.952 0.999 0.952 0.952 0.930 0.953 0.951 0.928 0.951 0.950 0.927 0.949 0.947
15 0.955 0.999 0.955 0.955 0.935 0.953 0.952 0.935 0.954 0.952 0.932 0.951 0.951
20 0.948 0.999 0.948 0.948 0.935 0.952 0.951 0.934 0.950 0.949 0.934 0.951 0.950

100

3 0.948 1.000 0.950 0.952 0.941 0.950 0.951 0.942 0.951 0.952 0.939 0.951 0.952
5 0.950 1.000 0.947 0.948 0.944 0.952 0.952 0.943 0.950 0.952 0.940 0.949 0.950
10 0.952 1.000 0.948 0.948 0.937 0.947 0.947 0.937 0.948 0.950 0.938 0.947 0.948
15 0.949 1.000 0.950 0.950 0.940 0.950 0.950 0.939 0.950 0.952 0.941 0.951 0.951
20 0.951 1.000 0.950 0.951 0.945 0.950 0.950 0.944 0.951 0.952 0.943 0.951 0.952

200

3 0.950 1.000 0.953 0.952 0.943 0.951 0.952 0.944 0.954 0.951 0.943 0.952 0.951
5 0.957 1.000 0.953 0.952 0.949 0.950 0.951 0.947 0.953 0.951 0.946 0.952 0.952
10 0.952 1.000 0.955 0.954 0.944 0.948 0.948 0.942 0.949 0.948 0.942 0.948 0.947
15 0.952 1.000 0.952 0.952 0.945 0.952 0.953 0.946 0.952 0.949 0.944 0.951 0.950
20 0.948 1.000 0.953 0.952 0.947 0.952 0.953 0.947 0.954 0.951 0.946 0.953 0.952

(b) Average coverage for AB
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Table 6: Average coverage for B and AB when error distribution is skew-normal

n λ

M = 1 M = 2 M = 5 M = 10 M = 20

vec(AB) AB AB vec(AB) AB AB vec(AB) AB AB vec(AB) AB AB

(1) (2) (1) (2) (1) (2) (1) (2)

10

10 0.944 0.817 0.942 0.941 0.738 0.944 0.942 0.731 0.942 0.941 0.734 0.942 0.94
-10 0.949 0.819 0.942 0.942 0.736 0.944 0.942 0.728 0.945 0.944 0.729 0.944 0.943
100 0.944 0.815 0.942 0.941 0.739 0.943 0.942 0.73 0.941 0.943 0.731 0.942 0.942
-100 0.95 0.816 0.944 0.944 0.735 0.944 0.942 0.726 0.943 0.942 0.73 0.944 0.942

50

10 0.942 0.947 0.941 0.944 0.917 0.945 0.945 0.913 0.941 0.944 0.917 0.946 0.945
-10 0.955 0.954 0.95 0.951 0.922 0.946 0.945 0.913 0.942 0.945 0.918 0.944 0.943
100 0.943 0.948 0.942 0.944 0.918 0.946 0.945 0.914 0.944 0.946 0.916 0.944 0.944
-100 0.953 0.953 0.951 0.952 0.923 0.946 0.945 0.913 0.943 0.945 0.917 0.944 0.943

200

10 0.952 0.971 0.953 0.952 0.95 0.957 0.956 0.943 0.953 0.953 0.943 0.949 0.95
-10 0.948 0.964 0.947 0.946 0.947 0.949 0.949 0.943 0.953 0.952 0.948 0.953 0.954
100 0.953 0.969 0.953 0.952 0.947 0.956 0.956 0.945 0.953 0.953 0.941 0.95 0.952
-100 0.95 0.963 0.95 0.948 0.948 0.949 0.949 0.946 0.95 0.95 0.947 0.953 0.954

(a) Average coverage for B

n λ

M = 1 M = 2 M = 5 M = 10 M = 20

vec(AB) AB AB vec(AB) AB AB vec(AB) AB AB vec(AB) AB AB

(1) (2) (1) (2) (1) (2) (1) (2)

10

10 0.95 0.964 0.95 0.95 0.798 0.95 0.95 0.796 0.949 0.948 0.793 0.95 0.95
-10 0.953 0.965 0.952 0.95 0.792 0.95 0.95 0.798 0.951 0.95 0.791 0.95 0.95
100 0.948 0.967 0.95 0.95 0.795 0.95 0.95 0.799 0.952 0.95 0.791 0.95 0.951
-100 0.953 0.965 0.952 0.951 0.791 0.951 0.95 0.797 0.95 0.95 0.789 0.948 0.949

50

10 0.946 0.999 0.944 0.945 0.927 0.946 0.944 0.928 0.949 0.947 0.927 0.95 0.948
-10 0.95 0.999 0.95 0.95 0.928 0.948 0.948 0.926 0.95 0.948 0.924 0.948 0.947
100 0.945 0.999 0.946 0.946 0.926 0.947 0.946 0.928 0.95 0.948 0.926 0.951 0.949
-100 0.951 1. 0.953 0.953 0.928 0.947 0.946 0.926 0.948 0.947 0.924 0.948 0.947

200

10 0.95 1. 0.955 0.954 0.949 0.953 0.954 0.947 0.951 0.95 0.946 0.956 0.955
-10 0.951 1. 0.951 0.951 0.944 0.946 0.947 0.947 0.951 0.949 0.945 0.95 0.95
100 0.953 1. 0.955 0.954 0.949 0.951 0.953 0.947 0.953 0.951 0.949 0.954 0.952
-100 0.951 1. 0.952 0.95 0.943 0.948 0.948 0.944 0.952 0.95 0.946 0.951 0.95

(b) Average coverage for AB
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Table 7: Monte Carlo estimates of ||E(Ω̂j)−Ωj ||1 in each Case 1-8 for n = 500 and γ = 0.05.

Target

Parameter M = 1 M = 10

Case 1 Ω1 0.00832404 0.00725665

Case 2 Ω2 0.00327056 0.00196958

Case 3 Ω3 0.0055076 0.00545225

Case 4 Ω4 0.00493499 0.00343167

Case 5 Ω5 0.00233433 0.00183536

Case 6 Ω6 0.00714904 0.00616492

Case 7 Ω7 0.000624239 0.000564305

Case 8 Ω8 0.00256119 0.00201542
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Table 8: Monte Carlo estimate of confidence region coverage probabilities in each Case 1-8 for n = 500

and γ = 0.05.

Target

Parameter M = 1 M = 10

1st Approach 2nd Approach Reiter (2005)

Case 1 Ω1 0.951 0.952 0.952 0.947

Case 2 Ω2 0.953 0.985 1.000 0.946

Case 3 Ω3 0.980 1.000 0.995 0.946

Case 4 Ω4 0.951 0.976 1.000 0.949

Case 5 Ω5 0.984 0.993 0.886 0.950

Case 6 Ω6 0.973 0.998 1.000 0.947

Case 7 Ω7 0.987 0.956 0.957 0.950

Case 8 Ω8 0.977 0.990 0.997 0.947
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Appendices to “Inference for Multivariate Regression
Model based on Synthetic Data generated using

Plug-in Sampling”

Appendix A

Proof of Theorem 2.1. : From (5), given (B̂,S), we have for B∗ and S∗ in (6),

V′|B̂,S ∼ Nnm(X′B̂,S⊗ In) =⇒ B∗|B̂,S = (XX′)−1XV′|B̂,S ∼ Npm(B̂,S⊗ (XX′)−1)

and
(n− p)S∗|S ∼ Wm(S, n− p).

Given the independence of B∗ and S∗, the conditional joint pdf of (B∗,S∗) is propor-
tional to

exp

{
−1

2
tr
(
S−1

[
(B∗ − B̂)′XX′(B∗ − B̂) + (n− p)S∗

])}
× |S

∗|n−p−m−1
2

|S|n2
, (A.1)

while, given the independence of B̂ and S, defined in the Introduction after (1), the joint
pdf of (B̂,S) is proportional to

exp{−1

2
tr
(
Σ−1

[
(B̂−B)′XX′(B̂−B) + (n− p)S

])
}|S|

n−p−m−1
2

|Σ|n2
. (A.2)

Therefore, we obtain the joint pdf of (B∗,S∗, B̂,S) by multiplying the two joint pdf’s
(A.1) and (A.2).

Since

tr{S−1(B∗ − B̂)′(XX′)(B∗ − B̂) + Σ−1(B̂−B)′(XX′)(B̂−B)}
= tr{(B∗ − B̂)S−1(B∗ − B̂)′(XX′) + (B̂−B)Σ−1(B̂−B)′(XX′)},

1



where, from the identities in Appendix B.1,

(B∗ − B̂)S−1(B∗ − B̂)′ + (B̂−B)Σ−1(B̂−B)′ =

=
[
B̂− (B∗S−1+ BΣ−1)(S−1+ Σ−1)−1

]
(S−1+ Σ−1)

[
B̂− (B∗S−1+ BΣ−1)(S−1 + Σ−1)−1

]′
+ (B∗ −B)(S + Σ)−1(B∗ −B)′,

integrating out B̂, we obtain the joint pdf of (B∗,S∗,S) proportional to

exp

{
−1

2
tr
[
(Σ + S)−1(B∗ −B)′(XX′)(B∗ −B) + (n− p)S−1S∗ + (n− p)Σ−1S

]}
× |S∗|

n−p−m−1
2 × |S|

− p+m+1
2

|Σ|n2
× |Σ−1 + S−1|−p/2. (A.3)

Making the transformation Ψ = Σ−1S, where the Jacobian is |Σ|m, and integrating out
Ψ, we obtain the desired result.

Proof of Theorem 2.2. : In (A.3), S∗ and B∗, conditional on S, are separable, with
B∗ ∼ Npm(B, (Σ + S)⊗ (XX′)−1) and (n− p)S∗ ∼ Wm(S, n− p), independent of B∗.

Then, (B∗ −B)′|S ∼ N(0, (XX′)−1 ⊗ (Σ + S)), and by Theorem 2.4.1 in Kollo and
Rosen (2005) we have that, for p ≥ m,

(B∗ −B)′(XX′)(B∗ −B)|S ∼ Wm(Σ + S, p).

Therefore, from Theorem 2.4.2 in Kollo and Rosen (2005) and subsection 7.3.3 in Anderson
(2003) we have

H|S = (Σ + S)−
1
2 (B∗ −B)′(XX′)(B∗ −B)(Σ + S)−

1
2 |S ∼ Wm(I, p),

G|S = (n− p)S−
1
2 S∗S−

1
2 |S ∼ Wm(I, n− p),

where H and G are two independent random variables.
Since we may write

T |S =
|(B∗ −B)′(XX′)(B∗ −B)|

|(n− p)S∗|
|S =

|Σ + S|
|S|

× |H|
|G|
|S,

where, given S, |G| ∼
∏m

i=1 χ
2
n−p−i+1 and |H| ∼

∏m
i=1 χ

2
p−i+1, with the chi-square ran-

dom variables in each product independent, we end up with a product of independent
F-distributions. So, conditionally on S, we have

T |S ∼
m∏
i=1

[
p− i+ 1

n− p− i+ 1
Fp−i+1,n−p−i+1

]
× |S−1(Σ + S)|.

2



Note that (n− p)S ∼ Wm(Σ, n− p), thus implying 1
n−pS

−1 ∼ W−1
m ((n− p)Σ−1, n− p),

or 1
n−pΣ

1/2S−1Σ1/2 ∼ W−1
m (I, n− p), which shows that the distribution of |S−1(Σ + S)| =

|Σ1/2S−1Σ1/2 + I| is independent of Σ, concluding the proof.

Proof of Corollary 3.1. : The proof is identical to the proof of Theorem 2.1 replacing,
conditional on B̂ and S, the joint pdf of (B∗,S∗) by the joint pdf of (B

∗
M ,S

∗
M) and observing

that

B
∗
M |B̂,S =

1

M

M∑
j=1

B∗j |B̂,S ∼ Npm(B̂,
1

M
S⊗ (XX′)−1),

M(n− p)S∗M |S = (n− p)
M∑
j=1

S∗j |S ∼ Wm(S,M(n− p)).

Proof of Corollary 3.2. : The proof is identical to the proof of Theorem 2.2 replacing,
conditional on S, B∗ and S∗ by B

∗
M and S

∗
M , noting that from the distribution in Corollary

3.1 we have that B
∗
M has Npm(B, (Σ + 1

M
S)⊗ (XX′)−1) distribution and that M(n−p)S∗M

is Wm(S,M(n− p)), independent of B
∗
M .

Proof of Corollary 3.3. The proof is identical to the proof of Theorem 2.1 replacing, con-
ditional on B̂ and S, the joint pdf of (B∗,S∗) by the joint pdf of (B

∗
M ,Scomb), noting that

we have

B
∗
M |B̂,S =

1

M

M∑
j=1

B∗j |B̂,S ∼ Npm(B̂,
1

M
S⊗ (XX′)−1),

(Mn− p)Scomb|S ∼ Wm(S,Mn− p).

Proof of Corollary 3.4. The proof is identical to the proof of Theorem 2.2 replacing, condi-
tional on S, B∗ and S∗ by B

∗
M and Scomb, noting that from the distribution of Corollary 3.3

we have that B
∗
M has Npm(B, (Σ + 1

M
S)⊗ (XX′)−1) distribution and that (Mn− p)Scomb

is Wm(S,Mn− p), independent of B
∗
M .

Appendix B

B.1

Some matrix identities and matrix calculations required in the proof of Theorem 2.1.

1. If the matrices A and B are p.d. then
(i) A−1 −A−1(A−1 + B−1)−1A−1 =A−1(A−1 + B−1)−1B−1 and

(ii) (A−1 + B−1)−1 = A(A + B)−1B = B(A + B)−1A.

3



2. Let S and Σ be symmetric:

(C−X)S−1(C−X)′ + (X−D)Σ−1(X−D)′ =[
X− (CS−1 + DΣ−1)(S−1 + Σ−1)−1

]
(S−1 + Σ−1)

[
X− (CS−1 + DΣ−1)(S−1 + Σ−1)−1

]′
+ CS−1C′ + DΣ−1D′ − (CS−1 + DΣ−1)(S−1 + Σ−1)−1(CS−1 + DΣ−1)′.

3. Taking the last three terms of the previous sum, using identities from item 1, we
have,

CS−1C′ −CS−1(S−1 + Σ−1)−1S−1C′ + DΣ−1D′ −DΣ−1(S−1 + Σ−1)−1Σ−1D′

−CS−1(S−1 + Σ−1)−1Σ−1D′ −DΣ−1(S−1 + Σ−1)−1S−1C′ =

C(S + Σ)−1(C′ −D′) + D(S + Σ)−1(D′ −C′) = (C−D)(S + Σ)−1(C−D)′.

B.2

We provide some details about the derivations of the results in Section 2.
Details of Result 1: From the joint pdf in (A.3) we see immediately that the MLE of B is
B̂MLE(V) = B∗ with E(B∗) = (XX′)−1XE(X′B̂) = B and that

V ar(B∗) = E(V arB∗|B̂,S(B∗|B̂,S)) + V ar(EB∗|B̂,S(B∗|B̂,S)) = 2Σ⊗ (XX′)−1.

Details of Result 2: Noting that (n−p)S∗|S∼Wm(S, n−p) and that (n−p)S ∼ Wm(Σ, n−p)
then immediately E(S∗) = E(S) = Σ.
Details of Result 5: Let us star by writing T∆ as

T∆ = T
(1)
∆ × T

(2)
∆ =

|(∆∗ −∆)′[A(XX′)−1A′]−1(∆∗ −∆)|
|D′(Σ + S)D|

× |D
′(Σ + S)D|

|(n− p)D′S∗D|
.

Recalling that we had
B∗|S ∼ Npm[B, (Σ + S)⊗ (XX′)−1]

in the proof of Theorem 2.2, we obtain

∆∗|S ∼ Nkr[∆,D′(Σ + S)D⊗A(XX′)−1A′].

Analogous to what was done in Theorem 2.2, we may conclude that

(∆∗ −∆)′[A(XX′)−1A′]−1(∆∗ −∆)|S ∼ Wr[D
′(Σ + S)D, k]

and hence

T
(1)
∆ =

|(∆∗ −∆)′[A(XX′)−1A′]−1(∆∗ −∆)|
|D′(Σ + S)D|

|S ∼
r∏
i=1

χ2
k−i+1,

4



which will be independent of S. Let us write T
(2)
∆ as

T
(2)
∆ =

|D′SD|
|(n− p)D′S∗D|

× |D
′(Σ + S)D|
|D′SD|

Recalling that (n− p)S∗|S ∼ Wm(S, n− p) from Theorem 2.2, we analogously obtain

|(n− p)D′S∗D|/|D′SD||S ∼
r∏
i=1

χ2
n−p−i+1,

which will also be independent of S. Lastly, it is easy to show by standard arguments that

|D′(Σ + S)D|
|D′SD|

∼ |W
∗ + Ir(n− p)|
|W∗|

∼ |Ir + (n− p)W∗−1|,

where W∗ ∼ Wr(Ir, n − p), which is independent of S. Combining the above terms, we
conclude that

T∆
st∼

{
r∏
i=1

k − i+ 1

n− p− i+ 1
Fi

}
|W∗ + (n− p)Ir|

|W∗|

where Fi ∼ Fk−i+1,n−p−i+1, completing the proof.
Adaptations of classical test criterion that are not pivotal: Let us consider H and G as we
did in Appendix A. We will begin to decompose all the four statistics in order to assume
the same kind of form and then prove why all of them are non-pivotal. The first statistic
is

T1 =
|S∗|

|S∗ + (B∗ −B)′(XX′)(B∗ −B)|
that we can decompose as

T1 =
|S||(n− p)S−1/2S∗S−1/2|

(n− p)m|S∗ + (Σ + S)1/2(Σ + S)−1/2(B∗ −B)′(XX′)(B∗ −B)(Σ + S)−1/2(Σ + S)1/2|

=
|G|

|G + (n− p)S−1/2(Σ + S)1/2H(Σ + S)1/2S−1/2|
.

Now let us consider the following statistics

T2 = (n− p)tr
[
H× (Σ + S)1/2S−1/2 ×G−1 × S−1/2(Σ + S)1/2

]
,

T3 = tr{H× [H + (Σ + S)−1/2S1/2 × (n− p)G× S1/2(Σ + S)−1/2]−1}
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and T4 = λ1 where λ1 denotes the largest eigenvalue of

(n− p)H× (Σ + S)1/2S−1/2 ×G−1 × S−1/2(Σ + S)1/2.

From T1 we can observe that a term of the denominator is

S−1/2(Σ + S)1/2H(Σ + S)1/2S−1/2|S ∼ Wm(S−1/2(Σ + S)S−1/2, p) ≡ Wm((S−1/2ΣS−1/2+I), p),

and in the other statistics there are similar terms. We can also observe that all of the
terms involve a product similar to S−1/2(Σ + S)1/2 that cannot be simplified the same way
we could do when using the determinant as in the statistic T used in this paper.

Thus, in order to prove that these statistics are dependent on Σ, we can see the empirical
distributions of T1, T2, T3 and T4 when we consider a simple case where m = 2, p = 3,
n = 100 and Σ =

(
1 ρ
ρ 1

)
with ρ = {0.2, 0.4, 0.6, 0.8} for a simulation size of 104, in Figure

1. After making the above simulations we can observe from its distributions and cut-off
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Figure 1: Empirical distributions and cut-off points (γ=0.05) of T1, T2, T3 and T4 for ρ = {0.2,0.4,0.6,0.8}.

points (γ = 0.05) that these four statistics are non-pivotal. We also see that the statistic
based on the ratio between (B∗ −B)′(XX′)(B∗ −B) and S∗ was the best try to find a
pivotal statistic.

B.3

We provide some details about the derivations of the results in Section 3.1.
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Details of Result 1: E(B
∗
M) = (XX′)−1X 1

M

∑M
i=1E(V′i) = (XX′)−1X 1

M

∑M
i=1 E(X′B̂) =

B and that

V ar(B
∗
M) =

M + 1

M
Σ⊗ (XX′)−1.

Details of Result 2: Noting that M(n− p)S∗M |S ∼ Wm(S,M(n− p)) and that (n− p)S ∼
Wm(Σ, n− p) then, immediately, E(S

∗
M) = E(S) = Σ.

B.4

We provide some details about the derivations of the results in subsection 3.2.
Details of Result 1: Noting that (Mn− p)Scomb|S ∼ Wm(S,Mn− p) and that (n− p)S ∼
Wm(Σ, n− p) then, immediately, E(Scomb) = E(S) = Σ.

B.5
Lastly, we provide some details about the derivations of the results in section 4.
Details of Expect Values in Section 4: Recall that (n− p)S ∼ Wm(Σ, n− p), thus implying

that E(|(n− p)S|) = |Σ|E(
∏m

i=1 χ
2
n−p−i+1) = (n−p)!

(n−p−m)!
|Σ|, since

∏m
i=1 χ

2
n−p−i+1 is a product

of independent χ2 variables. Also recalling that, conditionally on S,
we have (n− p)S∗ ∼ Wm(S, n− p), M(n− p)S∗M ∼ Wm(S,M(n− p)) and
(Mn− p)Scomb ∼ Wm(S,Mn− p), thus concluding that, conditionally on S,

E(|(n− p)S∗|) =
1

(n− p)m
× (n− p)!

(n− p−m)!
× |(n− p)S|,

E(|(n− p)S∗M |) =
1

Mm(n− p)m
× (Mn−Mp)!

(Mn−Mp−m)!
× |(n− p)S|

and

E(|(n− p/M)Scomb|) =
1

Mm(n− p)m
× (Mn− p)!

(Mn− p−m)!
× |(n− p)S|.

Combining the result of E(|(n − p)S|) with each of the synthetic expected values, condi-
tionally on S, we end up with the expression for E(ΥM) found in Section 4.
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B.6 Individual regressor coefficients confidence interval for the
original data

minB1 maxB1 minB2 maxB2

3.0276 3.45314 7.22404 7.81773
0.101763 0.128775 0.50271 0.540397
−0.100943 −0.0676293 −0.55975 −0.513273

0.000592196 0.00205233 −0.0160693 −0.0140322
−0.140275 0.307819 −0.392277 0.232881
−0.181448 0.249481 −0.339044 0.262165
−0.0719615 0.345724 −0.146577 0.436157
−0.124093 0.302649 −0.0634389 0.53193
−0.065135 0.356647 0.0415413 0.629991
−0.0445564 0.377282 0.00218244 0.59071
−0.0126063 0.434573 0.0703166 0.694198

0.155254 0.563845 0.512783 1.08283
0.244623 0.654163 0.828421 1.39979
0.237687 0.653551 0.812801 1.39299
0.365105 0.782933 1.04715 1.63009
0.400888 0.810689 1.39139 1.96312
0.680126 1.09312 1.7045 2.28069
0.686246 1.1133 2.21108 2.80688
0.696918 1.12775 2.16138 2.76245
−0.432626 0.0225628 −0.420386 0.214671
−0.152141 0.020387 −0.560916 −0.320213
−0.0876056 −0.0161402 −0.513375 −0.41367
−0.118923 −0.057579 −0.397948 −0.312365
−0.143437 0.0075315 −0.766689 −0.556065
−0.0741748 −0.00465169 −0.619728 −0.522733
−0.113329 −0.0443148 −0.174004 −0.0777186
−0.341987 −0.162744 −0.514953 −0.264881
−0.08713 0.0295535 −0.0262251 0.136566
−0.00459359 0.0347371 −0.135873 −0.0810009



,



˜̂B1
˜̂B2

3.24037 7.52088
0.115269 0.521554
−0.0842859 −0.536512
0.00132226 −0.0150507
0.0837721 −0.0796979
0.0340165 −0.0384396
0.136881 0.14479
0.0892781 0.234245
0.145756 0.335766
0.166363 0.296446
0.210983 0.382257
0.35955 0.797806
0.449393 1.11411
0.445619 1.1029
0.574019 1.33862
0.605789 1.67726
0.886624 1.9926
0.899771 2.50898
0.912332 2.46191
−0.205032 −0.102857
−0.0658772 −0.440565
−0.0518729 −0.463522
−0.0882509 −0.355157
−0.0679526 −0.661377
−0.0394132 −0.571231
−0.0788219 −0.125861
−0.252366 −0.389917
−0.0287882 0.0551704
0.0150718 −0.108437


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B.7 Individual regressor coefficients confidence interval for the
single synthetic data

minB1 maxB1 minB2 maxB2

3.02817 3.6323 7.13692 7.98322
0.0972511 0.1356 0.491859 0.545581
−0.106496 −0.059202 −0.567982 −0.50173
−0.000170873 0.00190206 −0.0158549 −0.012951
−0.386709 0.249444 −0.562915 0.328241
−0.339504 0.272278 −0.58278 0.274238
−0.242414 0.350569 −0.362125 0.468556
−0.249879 0.355959 −0.312773 0.535917
−0.179851 0.418947 −0.16971 0.669118
−0.229205 0.369672 −0.189196 0.649742
−0.109485 0.525368 −0.0587802 0.830556
−0.0070404 0.57303 0.321972 1.13457
0.0776444 0.659063 0.627344 1.44183
0.0440082 0.634403 0.650395 1.47745
0.198631 0.791815 0.923888 1.75485
0.231117 0.812905 1.18828 2.00328
0.471254 1.05758 1.46725 2.28861
0.491991 1.09827 1.94475 2.79406
0.507036 1.11868 2.00075 2.85757
−0.614778 0.0314465 −0.642398 0.262868
−0.192984 0.0519521 −0.586147 −0.243027
−0.090293 0.0111654 −0.54331 −0.401182
−0.114903 −0.027814 −0.389401 −0.267403
−0.141936 0.0723915 −0.788623 −0.488382
−0.0592764 0.0394245 −0.654749 −0.516484
−0.139882 −0.041904 −0.208622 −0.0713688
−0.417745 −0.163276 −0.574755 −0.218281
−0.154133 0.0115208 −0.0584952 0.173561
−0.0061631 0.0496741 −0.144825 −0.066605



,



˜̂B1
˜̂B2

3.33024 7.56007
0.116426 0.51872
−0.0828492 −0.534856
0.000865592 −0.0144029
−0.0686325 −0.117337
−0.0336128 −0.154271
0.0540774 0.0532158
0.0530399 0.111572
0.119548 0.249704
0.0702339 0.230273
0.207941 0.385888
0.282995 0.728269
0.368354 1.03459
0.339206 1.06392
0.495223 1.33937
0.522011 1.59578
0.764416 1.87793
0.795129 2.3694
0.812856 2.42916
−0.291666 −0.189765
−0.0705159 −0.414587
−0.0395638 −0.472246
−0.0713583 −0.328402
−0.0347721 −0.638503
−0.00992597 −0.585616
−0.0908932 −0.139996
−0.290511 −0.396518
−0.0713061 0.0575331
0.0217555 −0.105715


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B.8 Individual regressor coefficients confidence interval for the
multiple M=5 synthetic data (1st procedure)

minB1 maxB1 minB2 maxB2

2.93058 3.39889 7.17972 7.83333
0.0972081 0.126935 0.498923 0.540413
−0.0968526 −0.0601912 −0.559855 −0.508687
0.000700045 0.00230693 −0.0159042 −0.0136615
−0.108209 0.38492 −0.423626 0.264626
−0.147025 0.327213 −0.381087 0.2808
−0.0115419 0.448123 −0.160998 0.480549
−0.0618431 0.407787 −0.0978739 0.557582
−0.0053142 0.458858 0.00350566 0.651344
−0.0116139 0.45262 −0.0418757 0.606048
0.0441611 0.536283 0.0454834 0.73233
0.204335 0.653991 0.48795 1.11553
0.29911 0.749811 0.803562 1.4326
0.286226 0.743884 0.800312 1.43906
0.410814 0.870635 1.02998 1.67174
0.451483 0.90247 1.3587 1.98813
0.724857 1.17936 1.67296 2.3073
0.73176 1.20173 2.18023 2.83616
0.727331 1.20146 2.13127 2.79301
−0.489139 0.0117984 −0.561753 0.137396
−0.168175 0.0216926 −0.529872 −0.264877
−0.0989116 −0.0202637 −0.548395 −0.438628
−0.121477 −0.0539678 −0.401783 −0.307562
−0.145168 0.0209728 −0.824159 −0.592279
−0.066873 0.00963738 −0.614174 −0.507389
−0.115578 −0.0396281 −0.163004 −0.0570012
−0.344065 −0.146807 −0.568873 −0.293563
−0.116207 0.0122035 −0.0401409 0.13908
−0.00421745 0.0390661 −0.1346 −0.0741894



,



˜̂B1
˜̂B2

3.16474 7.50652
0.112072 0.519668
−0.0785219 −0.534271
0.00150349 −0.0147829
0.138355 −0.0794999
0.0900943 −0.0501434
0.21829 0.159775
0.172972 0.229854
0.226772 0.327425
0.220503 0.282086
0.290222 0.388906
0.429163 0.801739
0.524461 1.11808
0.515055 1.11969
0.640725 1.35086
0.676976 1.67342
0.952109 1.99013
0.966745 2.5082
0.964395 2.46214
−0.23867 −0.212178
−0.0732414 −0.397375
−0.0595876 −0.493511
−0.0877223 −0.354672
−0.0620976 −0.708219
−0.0286178 −0.560782
−0.0776033 −0.110003
−0.245436 −0.431218
−0.0520018 0.0494693
0.0174243 −0.104394


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B.9 Individual confidence intervals for the multiple M = 5 syn-
thetic data (2nd procedure))

minB1 maxB1 minB2 maxB2

2.93001 3.39946 7.17893 7.83412
0.0971719 0.126972 0.498873 0.540463
−0.0968972 −0.0601466 −0.559917 −0.508625
0.000698089 0.00230888 −0.0159069 −0.0136588
−0.108809 0.38552 −0.424461 0.265461
−0.147602 0.327791 −0.38189 0.281603
−0.0121014 0.448682 −0.161776 0.481327
−0.0624147 0.408359 −0.0986693 0.558377
−0.00587915 0.459423 0.00271958 0.65213
−0.0121789 0.453185 −0.0426619 0.606834
0.0435621 0.536882 0.0446499 0.733163
0.203788 0.654538 0.487188 1.11629
0.298562 0.75036 0.802799 1.43336
0.285669 0.744441 0.799537 1.43983
0.410254 0.871195 1.0292 1.67252
0.450934 0.903019 1.35793 1.9889
0.724303 1.17991 1.67219 2.30807
0.731188 1.2023 2.17944 2.83696
0.726754 1.20204 2.13047 2.79381
−0.489748 0.0124081 −0.562601 0.138245
−0.168407 0.0219237 −0.530194 −0.264555
−0.0990073 −0.0201679 −0.548528 −0.438494
−0.121559 −0.0538856 −0.401897 −0.307447
−0.14537 0.021175 −0.82444 −0.591997
−0.0669662 0.00973051 −0.614303 −0.50726
−0.115671 −0.0395357 −0.163132 −0.0568725
−0.344305 −0.146567 −0.569207 −0.293229
−0.116363 0.0123598 −0.0403584 0.139297
−0.00427013 0.0391188 −0.134673 −0.0741161



,



˜̂B1
˜̂B2

3.16474 7.50652
0.112072 0.519668
−0.0785219 −0.534271
0.00150349 −0.0147829
0.138355 −0.0794999
0.0900943 −0.0501434
0.21829 0.159775
0.172972 0.229854
0.226772 0.327425
0.220503 0.282086
0.290222 0.388906
0.429163 0.801739
0.524461 1.11808
0.515055 1.11969
0.640725 1.35086
0.676976 1.67342
0.952109 1.99013
0.966745 2.5082
0.964395 2.46214
−0.23867 −0.212178
−0.0732414 −0.397375
−0.0595876 −0.493511
−0.0877223 −0.354672
−0.0620976 −0.708219
−0.0286178 −0.560782
−0.0776033 −0.110003
−0.245436 −0.431218
−0.0520018 0.0494693
0.0174243 −0.104394


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B.10 Individual confidence intervals for the multiple M = 5 syn-
thetic data using procedure of Reiter (2005)

minB1 maxB1 minB2 maxB2

2.96796 3.36151 7.23729 7.77576
0.0995434 0.1246 0.502667 0.536668
−0.0939313 −0.0631125 −0.55526 −0.513283
0.000821743 0.00218523 −0.0156967 −0.0138691
−0.0718543 0.348565 −0.365043 0.206044
−0.108755 0.288943 −0.322426 0.222139
0.023707 0.412874 −0.105777 0.425328
−0.0205464 0.366491 −0.0427216 0.502429
0.0339183 0.419626 0.0605533 0.594296
0.0259288 0.415078 0.0167955 0.547377
0.0872027 0.493241 0.104035 0.673778
0.241437 0.616889 0.542842 1.06064
0.335716 0.713205 0.857966 1.37819
0.320877 0.709233 0.858478 1.38089
0.448814 0.832636 1.08679 1.61493
0.488064 0.865889 1.41258 1.93425
0.757956 1.14626 1.72799 2.25227
0.769124 1.16437 2.23578 2.78061
0.763264 1.16553 2.19283 2.73145
−0.442428 −0.0349121 −0.507455 0.0830979
−0.15406 0.00757737 −0.50452 −0.29023
−0.0960601 −0.0231151 −0.539017 −0.448006
−0.117733 −0.0577119 −0.396741 −0.312603
−0.136677 0.0124814 −0.808989 −0.607448
−0.0605667 0.00333109 −0.606661 −0.514902
−0.110188 −0.0450188 −0.157626 −0.0623794
−0.326546 −0.164325 −0.546601 −0.315834
−0.106702 0.00269888 −0.0241126 0.123051
−0.000640254 0.0354889 −0.1289 −0.0798891



,



˜̂B1
˜̂B2

3.16474 7.50652
0.112072 0.519668
−0.0785219 −0.534271
0.00150349 −0.0147829
0.138355 −0.0794999
0.0900943 −0.0501434
0.21829 0.159775
0.172972 0.229854
0.226772 0.327425
0.220503 0.282086
0.290222 0.388906
0.429163 0.801739
0.524461 1.11808
0.515055 1.11969
0.640725 1.35086
0.676976 1.67342
0.952109 1.99013
0.966745 2.5082
0.964395 2.46214
−0.23867 −0.212178
−0.0732414 −0.397375
−0.0595876 −0.493511
−0.0877223 −0.354672
−0.0620976 −0.708219
−0.0286178 −0.560782
−0.0776033 −0.110003
−0.245436 −0.431218
−0.0520018 0.0494693
0.0174243 −0.104394


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