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Executive Summary

As enacted in 1975 and amended in 1982 and 2006, Section 203(b) of the Voting Rights Act of
1965 requires that a State or political subdivision in certain circumstances must provide language
assistance during elections for groups of citizens who are unable to speak or understand English well
enough to participate in the electoral process. These circumstances are defined in Section 203(b)
in terms of specific determinations involving the sizes and proportions of designated population
subgroups as measured by the most current American Community Survey (ACS) and other census
data. Section 203(b) as amended prescribes that the Director of the Census Bureau shall make
these determinations every 5 years, based on population estimates derived from the ACS, and
allows for the use of other relevant census data. The 2016 determinations released on December
6, 2016 (https://www.census.gov/rdo/pdf/1_FRN_2016-28969.pdf) are based on 2010-2014 5-
year ACS data. Although 2010 decennial Census data played a prominent role in the statistical
methodology used to produce the 2011 Section 203 determinations, those data are now considered
too far out of date for the 2016 determinations.

For Section 203(b), only the voting-age population (18 or over) is relevant. The law categorizes
voting-age persons according to citizenship, limited English-proficiency (LEP), and illiteracy. For
present purposes, the binary classifications by voting-age, citizenship, and illiteracy are each defined
by the answer to a single ACS question, and LEP is defined through the answers to two ACS
questions. In addition, respondents to the Census or ACS self-identify as belonging to up to 8 racial
groups and 1 ethnic classification which are then used to define ‘Language Minority Groups’ (LMGs)
for purposes of Section 203(b). These LMGs are defined by the law under broad groupings of Asian,
American Indian, and Spanish languages. They are further refined by the census detailed citizenship
and language proficiency categories within each of these groups. For the 2016 determinations, 68
LMGs were defined: 16 Asian, 51 American Indian or Alaska Native (AIAN), and one Hispanic
LMG. Each ACS individual can contribute to the population estimates for all self-identified LMGs.
(Among all sampled persons in at least one LMG, approximately 3% declare themselves in two or
more LMGs.)

The nation is partitioned into roughly 8000 Jurisdictions (counties or minor civil divisions)
which are the basis for Section 203(b) coverage determinations. There were 7,862 Jurisdictions
in ACS 2010-2014 5-year data containing at least one voting-age respondent. Further, American
Indian Areas (AIAs) are relevant to the Section 203(b) determinations. In the 2010-2015 ACS
5-year data, there are sampled persons residing in 568 unique AIAs, and those sampled persons
reside in a total of 508 distinct Jurisdictions.

Section 203(b) prescribes generally that states and Jurisdictions are required to provide language
assistance to voters in a language other than English for members of a LMG according to the
following rules:

(i) A state must provide language assistance to voters for a LMG if the illiteracy rate among LEP
citizen voting-age members of the LMG in the state exceeds the national rate of illiteracy
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among citizens, and the number of LEP voting-age citizens in the LMG is greater than 5%
of the total number of voting-age citizens in the state

(ii) A Jurisdiction (county or MCD) must provide language assistance to voters for a LMG if
the illiteracy rate among LEP voting-age citizens in the LMG and Jurisdiction exceeds the
national rate of citizen illiteracy and the number of LEP voting-age citizens in the Jurisdiction
and LMG is greater than either 10,000 or 5% of the total voting-age citizen population of the
Jurisdiction.

(iii) All Jurisdictions containing any part of an American Indian Area (AIA) must provide language
assistance to voters for a AIAN LMG if the illiteracy rate among LEP citizen voting-age AIAN
persons of the LMG in the AIA exceeds the national rate of citizen illiteracy and the number
of LEP voting-age citizens in the AIA and LMG is greater than 5% of the total voting-age
citizen AIAN population of the AIA.

Special tabulations of weighted survey estimates of state, Jurisdiction, and AIA voting-age pop-
ulations cross-classified by citizenship, limited English proficiency, illiteracy, and LMG are available
from American Community Survey 5-year data, and could be used to create direct estimates of all
of the ingredients of the criteria (i)-(iii) for determinations. However, the counts of ACS-sampled
voting-age persons by Jurisdiction and LMG on which these weighted sums would be based are of-
ten quite small, so the variability (standard errors) of the direct estimates are often large compared
to the estimates themselves. Moreover, the standard errors estimated by current ACS methodology
are also very unreliable for population counts in small domains, the intersection of one Jurisdiction
(or AIA) and LMG.

Building on the experience with statistical modeling gained in producing the 2011 determina-
tions, development of statistical estimation methodology for the 2016 determinations has focused
on model-based, small-area estimation techniques. Small-area estimation is a growing statistical
subdiscipline devoted to enhancing the precision of estimation through the formulation of models
for multiple small areas which ‘borrow strength’ from one another through shared statistical param-
eters. The main idea behind this approach is that many small domains within the same LMG may
behave similarly with respect to domain proportions of citizens within the voting-age population or
with respect to domain proportions of LEP persons among citizens, across Jurisdictions for fixed
LMGs, and these proportions may also exhibit similar relationships with observable domain-specific
variables.

The form of model chosen for the 2016 statistical estimation is a Dirichlet-multinomial model,
a random-effects generalization of logistic regression models for the incidence of citizenship among
voting-age persons within a domain, and for the incidence of LEP among voting-age citizens within
the domain. Under this model, the characteristics of the voting-age ACS-sampled persons within
each domain are viewed as the outcomes of independent multinomial trials, with each voting-age
person in the domain viewed as falling into one of four mutually exclusive categories of non-citizen,
LEP illiterate citizen, LEP literate citizen, or non-LEP citizen, randomly and independently of
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all other persons once covariates and domain-level random effects are taken into account. The
underlying predictable parts of rates of citizenship and of LEP among citizens at domain level,
are each modeled within LMG across Jurisdiction as logistic regressions in terms of ‘synthetic’
covariates consisting of the corresponding ACS directly estimated rates at the level of the state
containing the domain, along with other domain-level covariates such as the proportions of college-
educated, of foreign-born, and of foreign-language speakers. The outcome data used to fit this
model are the directly estimated ACS domain-level citizenship, LEP, and illiterate proportions.
The parameters of these multinomial trials are shared across Jurisdictions within each fixed LMG.
This ‘empirical Bayes’ statistical framework results in estimators of citizenship, LEP, and illiterate
proportions that are weighted combinations of the direct ACS survey-weighted ratio estimators
and model-based parameter estimators for the corresponding quantities; and these weights heavily
favor the direct estimators in large Jurisdictions.

The choices of models and predictive covariates have been assessed primarily using earlier (2008-
2012) ACS data, by comparison and goodness-of-fit diagnostics against the direct ACS survey-
weighted domain population estimators and also against alternative models. Among models con-
sidered, the Dirichlet-multinomial models combine the virtues of simplicity and of stability by
comparison with the direct estimators. The models are fitted separately on data for each LMG,
and separately for Jurisdictions and for AIAs. The models were generally chosen to be similar
across LMGs, but more or fewer covariates were used according to how numerous were the Juris-
dictions (or AIAs) with at least a designated minimum sample size and to how detailed a model
could be fitted with numerical stability.

Beyond developing the method of point-estimation used in the 2016 determinations, this report
also summarizes a methodology for estimation of the model-based mean-squared prediction errors
(MSPEs), which should be compared to the unbiased direct variances. The variance estimation
method, newly developed at the Census Bureau for this purpose, is a combination of Monte Carlo
parametric-bootstrap re-sampling of data from the model with the replicate-weight (Successive
Difference Replication) methodology regularly used in ACS data releases. The latter aspect of
variance estimation is relevant in our models because the numbers of voting-age citizens within each
domain are estimated directly using survey weights, with the model reflecting only the proportions
of citizens, LEP and illiterate persons among the voting-age persons in the domain.

The MSPEs of the model-based estimates are compared in detail with the variances of direct
survey estimates that might have been used, in order to clarify the extent to which the small-area
estimation techniques have improved the precision of population estimates underlying the 2016
Voting Rights Act Section 203(b) coverage determinations. Overall, model-based MSPEs for LEP
proportions are typically at least 25% smaller than the corresponding direct-method variances. For
a small proportion of domains, MSPEs were somewhat larger than the direct-method variances.
These tended to be domains with characteristics combining large sample sizes, small point esti-
mates and small direct-method variances. For the domains of greatest relevance to the coverage
determinations, those with LEP within-domain proportions near 0.05, the model-based MSPEs are
found to be much smaller than the direct-method variances.
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1 Introduction

According to Section 203(b) of the Voting Rights Act of 1965 beginning in 1975, as later amended
in 1982 and 2006, States or political subdivisions must in certain circumstances provide language
assistance during elections for groups of citizens who are unable to speak or understand English
well enough to participate in the electoral process. Section 203(b) prescribes these circumstances
[Appendix A] in terms of specific determinations, made by the Director of the Census Bureau,
involving the sizes and proportions of designated population subgroups as measured by the decennial
census and the most current available American Community Survey (ACS).

In 2016, the Director of the Census Bureau made coverage determinations for 68 specified
racial/ethnic Language Minority Groups (LMGs) within roughly 8000 Jurisdictions [https://www.
census.gov/rdo/pdf/1_FRN_2016-28969.pdf]. The Jurisdictions constitute an electorally rele-
vant partition of the nation into counties and minor civil divisions. There were 7,862 Jurisdictions
in ACS 2010-2014 5-year data containing at least one voting-age respondent. A coverage determina-
tion refers to a specific Jurisdiction-LMG pair, and multiple LMGs may be covered within a single
Jurisdiction. For all Jurisdiction-LMG pairs there are at least two possible ways to be covered by
Section 203. First, a LMG may meet the state-level coverage criteria, in which case all Jurisdictions
in that state are covered for that LMG. Second, a LMG may meet the Jurisdiction-level coverage
criteria, resulting in coverage of that specific Jurisdiction-LMG pair. Lastly, American Indian and
Alaska Native (AIAN) LMGs can meet American Indian Area-level (AIA-level) coverage criteria.
If an AIAN LMG meets the AIA-level coverage criteria for a certain AIA, then all Jurisdictions
that contain all or part of the AIA are covered for that LMG. Specifically, the coverage criteria are:

Criteria for state-level coverage for a particular LMG:

S1 The proportion of limited English-proficient voting-age citizens in the LMG among all voting-
age citizens in the state is greater than 5 percent; and

S2 The illiteracy rate among limited English-proficient voting-age citizens in the LMG in the
state is greater than the national illiteracy rate.

Criteria for Jurisdiction-level coverage for a particular LMG:

J1 (a) The proportion of limited English-proficient voting-age citizens in the LMG among all
voting-age citizens in the Jurisdiction (LEPpropJur) is greater than 5 percent; or

(b) The number of limited English-proficient citizens that are members of the LMG (LEPtotJur)
is greater than 10,000; and

J2 The illiteracy rate among limited English-proficient voting-age citizens of that LMG in the
Jurisdiction (ILLrateJur) is greater than the national illiteracy rate.
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Criteria for AIA-level coverage for a particular AIAN LMG:

A1 The proportion of limited English-proficient voting-age citizens in the LMG among all AIAN
voting-age citizens in the AIA (LEPpropAIA) is greater than 5 percent; and

A2 The illiteracy rate among limited English-proficient voting-age citizens of that LMG in the
AIA (ILLrateAIA) is greater than the national illiteracy rate.

Several types of quantities are needed to form the totals and proportions used to evaluate
coverage criteria at the State, Jurisdiction, and AIA levels. Specifically, the total numbers of
limited English-proficient voting-age citizens and illiterate limited English-proficient voting-age
citizens are required for each LMG within each State and Jurisdiction and for each AIAN LMG
within each AIA. In addition, we use the total numbers of voting-age citizens within each State and
Jurisdiction and of voting-age AIAN citizens within each AIA. These quantities can be estimated
directly from ACS data; however, the precision of some of the estimates, especially for the limited
English-proficiency proportions and illiteracy rates, can be quite poor because many of the domains
are extremely small. The national illiteracy rate is computed as the number of illiterate voting-age
citizens divided by the total voting-age citizens. The rate used for the 2016 coverage determinations
based on ACS 2014 5-year data was 1.31%.

In an effort to improve the precision and stability of the estimates used to make the coverage
determinations, the Census Bureau decided to utilize a model-based estimation method for the
2016 coverage determinations. A model-based method was also used in the 2011 Section 203(b)
determinations [Joyce et al., 2012, 2014]. The basic rationale behind model-based small-domain
estimation methods is that many small areas may be similar according to measured characteristics,
and viewed as differing through independent random ‘small domain effects’. Modeling with shared
statistical parameters may allow those parameters to be estimated with an increased precision not
possible for one or a few small domains. This phenomenon of gaining precision of estimation through
shared parameters is often called ‘borrowing strength’ and is the essence of a growing statistical
subdiscipline called small-area estimation [Rao and Molina, 2015]. The greatest gains in precision
of estimation through small-area methods arise when useful predictive covariate measurements
are available at the small-domain level for inclusion in regression-type models. Those aspects of
small-domain differences not predictable through the ‘fixed effect’ covariates are modeled through
independent ‘random effects’ from a distribution of an assumed form. The remaining sections of this
report describe the rationale, model, details of implementation and assessments for the model-based
method used to derive the estimates for the 2016 Section 203(b) determinations.

2 Terminology and Data

The sources of data allowed by law to be used in the coverage determinations are the ACS and
comparable Census data. The ACS is an ongoing annual household survey that records information
about the nation’s people which is used in many different ways. The ACS releases 1-year as well as

3



5-year data products. The 5-year products aggregate the ACS data collected over a 5-year period,
allowing increased precision of population estimates at the cost of temporal specificity. The 5-year
data are particularly useful for estimating features of small geographic areas or small subgroup
domains where the precision of the 1-year estimates is too poor to allow their release under Census
Bureau statistical quality guidelines. For the purposes of the coverage determinations, 5-year ACS
data are used specifically because of the need to estimate population subgroups in small geographic
areas. At the time of estimating the models used to make the 2016 coverage determinations, the
2014 5-year ACS was the most recent dataset available and therefore was used as the data source.
However, model exploration and development were done using only the 2012 ACS 5-year data,
before the 2014 data were available. The use of 2010 Decennial Census data was explored in
the model development process; however, 2010 data were ultimately judged to be too far out of
date to provide reliable voting-age person counts for each LMG, marking a major difference from
the 2011 methodology which did use 2010 Decennial Census data in producing the 2011 coverage
determinations.

The Section 203(b) relevant political subdivisions, which we refer to as Jurisdictions (Jur), are
Counties in most states and Minor Civil Divisions (MCDs) in eight states (CT, ME, MA, MI, NH,
RI, VT, WI). In the 5-year ACS 2010-2014 data, there were 7862 Jurisdictions containing at least
one sampled voting-age person, and 568 AIAs containing at least one sampled voting-age person.
AIAs may intersect with multiple Jurisdictions, and single Jurisdictions may contain all or part of
multiple AIAs.

Limited English-proficiency and illiteracy indicators are derived from ACS questions. For pur-
poses of coverage determinations, limited English-proficiency is defined as speaking a language
other than English at home and speaking English “Less than Very Well”. Illiteracy is defined as
having less than a 5th grade education. The subgroups needed to estimate the coverage determina-
tion quantities are defined through intersections of the properties of voting-age, citizenship, limited
English-proficiency, and illiteracy. Throughout this report, we refer to the relevant population
subgroups by the following abbreviations:

VOTAG: Voting-age persons;
CIT: Voting-age citizens;
LEP: Limited English-proficient, voting-age citizens; and
ILL: Illiterate, limited English-proficient, voting-age citizens.

It is important to note the nested relationship among VOTAG, CIT, LEP, and ILL in this report,
displayed graphically in Figure 1. Specifically, all ILL persons are LEP, all LEP persons are CIT,
and all CIT persons are VOTAG. Think of these as population subgroups for a specific LMG and
at a specific geographic level (state, Jurisdiction, or AIA).

In the Decennial Census and the ACS, persons self-identify into one or more racial and ethnic
groups in response to race and ethnicity questions. Certain of these groups are called Language
Minority Groups (LMGs) for purposes of Section 203(b); all are listed in Appendix B. There are
16 LMGs within the Asian racial group, another 51 LMGs within the AIAN racial group, and a
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Figure 1: The relationship between VOTAG, CIT, LEP and ILL subgroups.

single Hispanic LMG that cuts across racial groups. People who self-identify into more than one
racial/ethnic group can therefore belong to more than one LMG, although only a small proportion
do, about 3% out of all LMG persons in the 2010-2014 ACS data. Table 1 displays survey-weighted
estimated frequencies of multiple LMGs in these data. Coverage determinations are made separately
for each LMG, so that people belonging to multiple LMGs count towards the coverage criteria for
all of them.

Table 1: Frequency distribution of multiple LMG group self-identification, out of 20,338,189 voting-
age persons in ACS 5-year (2010-2014) data.

LMGs claimed 0 1 2 3 4 5 6 7 8

# of persons 16,778,586 3,448,766 104,233 5,841 541 141 65 14 2

Percent of total 82.50 16.96 0.51 0.029 .003 .001 0 0 0
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3 Model Rationales and Descriptions

The quantities that we tabulated from the ACS files for use in the small area models and estimates
necessary for the coverage determinations were:

(a) unweighted numbers of ACS-sampled VOTAG, CIT, LEP, and ILL persons in each (Jur,
LMG);

(b) survey-weighted ACS estimates of total numbers of VOTAG, CIT, LEP, and ILL persons in
each (Jur, LMG);

(c) unweighted numbers of ACS-sampled VOTAG, CIT, LEP, and ILL persons in each (AIA,
AIAN LMG);

(d) survey-weighted ACS estimates of total numbers of VOTAG, CIT, LEP, and ILL persons in
each (AIA, AIAN LMG);

(e) survey-weighted ACS estimates of total numbers of VOTAG and CIT persons in each (Jur);

(f) survey-weighted ACS estimates of total numbers of AIAN VOTAG and CIT persons in each
(AIA); and

(g) covariates as detailed further in Section 3.1

The direct ACS survey-weighted estimators, (b) and (d), of the domain total numbers of LEP
and ILL persons can be used in conjunction with (e) and (f) to estimate the coverage determination
quantities. If these estimators were stable, they would be the design-based estimators of choice;
however, many of these survey-weighted total estimators are based on extremely small sample sizes,
and would yield estimates with large standard errors.

The coefficient of variation (CV) of a point estimate is defined as its standard error divided
by the estimate, and measures its relative precision. The Census Bureau requires that the CV for
a majority of the ACS estimates in each published table must be less than or equal to 0.30 for a
survey to meet the Census Bureau’s statistical quality standard for sampling error; and estimates
with CVs greater than 0.61 are said to be unreliable. Table 2 shows that a majority of CVs for
the ACS estimated total number of CITs in single (Jur, LMG) domains are quite large, whereas
the CVs for the total estimated citizens in Jurisdictions are mostly small. As a result, many of the
direct survey-weighted estimates using the total CITs in each (Jur, LMG) or similarly the total
LEPs in the (Jur, LMG), such as those used in the calculations for estimates (b) above, will be
unreliable. By contrast, the direct survey-weighted estimates of the total CITs in the Jurisdictions
are typically precise, giving us confidence to use them directly in the calculations.

Figure 2 is based on 2014 ACS 5-year data and shows the CVs, point estimates, and 90%
confidence intervals for direct survey-weighted (Jur, LMG) domain estimates of LEPpropJur, for
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Table 2: Summary of coefficients of variation for ACS 2014 5-year direct survey-weighted estimates
of total CITs in domains with estimated VOTAG persons ≥ 50 and estimated CITs > 0, where
“Qu.xx” denotes the xx percentile.

Estimate Min. Qu.05 Qu.25 Median Qu.75 Qu.95 Max.

CITs in (Jur, LMG) 0.002 0.062 0.220 0.380 0.549 0.834 4.995
CITs in Jurisdiction 0.000 0.002 0.005 0.024 0.069 0.121 0.618

the subset of 189 domains whose 90% confidence interval includes 0.05 (the quantity and threshold
for meeting determination criteria J1). Because the 90% confidence intervals for these estimates
include values that meet the determination criterion (> 0.05) and other values that do not meet
it, the decision for these (Jur, LMG) domains is unclear yet particularly important. Additionally,
many of the 90% confidence intervals for these estimates are extremely wide, which is also reflected
in the large coefficients of variation. Thus, the precision is undesirably low for many of the 189
direct survey-weighted (Jur, LMG) estimates near 0.05.

To mitigate this kind of small-domain imprecision, we have developed model-based estimators
for the target domain totals in the spirit of small-area estimation [Rao and Molina, 2015]. The main
idea of this approach is that many small (Jur, LMG) or (AIA, LMG) domains within the same
LMG may behave similarly with respect to domain proportions of citizenship among the VOTAG
population, of limited English proficiency among voting-age citizens, and of illiteracy among limited
English-proficient voting-age citizens. Additionally, this similarity may be exhibited in the form of
shared relationships between the outcome proportions and observable domain-specific covariates.

The unifying idea in all the models we considered was that the outcomes follow a Generalized
Linear Mixed Model [Breslow and Clayton, 1993] with form and parameters shared across domains
within LMG. The models use independent random effects to account for domain differences within
LMG, and they are fitted separately for each LMG. The final estimates were constructed within
an empirical-Bayes framework that ensured that the estimates are weighted combinations of the
direct ACS survey-weighted ratio estimates and model-based estimates with substituted parameter
estimates. The empirical-Bayes estimators have the feature that in areas where the direct estimate
is relatively precise, the final estimate will tend to agree with the direct estimate. Alternatively,
the empirical-Bayes estimator will more heavily favor the model-based estimate for areas where the
direct estimate has a large standard error.

The outcomes of interest in the models, LEP and ILL totals, are not estimated directly. Instead,
in each multinomial model for a particular LMG we estimate the proportion of VOTAG persons in
each of four disjoint categories: not CIT, CIT but not LEP, LEP but not ILL, and ILL (depicted as
successive annuli and central disk in Figure 1). These estimated proportions can then be combined
with the direct estimate of the total number of VOTAG persons in the (LMG, Jur) to get an estimate
of the LEP and ILL totals. Separate models were estimated for each LMG across Jurisdictions as
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Figure 2: Coefficients of variation, direct estimates of LEP proportions LEPpropJur, and 90%
confidence intervals for 2014 ACS 5-year estimates whose CI includes 0.05 .
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well as across AIAs for each AIAN LMG. Guided by the principle of analyzing each LMG separately,
each model was fitted from data on all persons within the LMG regardless of membership in other
LMGs. As a result, one person’s data may contribute to multiple LMG models. (See Table 1 for
the extent of self-identifications into multiple LMGs.) This differs from the ‘local majority’ model
strategy used in 2011 in which each person was assigned the unique largest local LMG among that
person’s self-identified LMGs. The only way in which models fitted to different LMGs influence
one another is that the subset of fixed-effect covariates used for an LMG was chosen from a list of
possible predictors according to a grouping of LMGs with similar numbers of Jurisdictions or AIAs
containing ACS samples of similar sizes.

3.1 Covariates

Predictive covariates considered for use in our models consisted of population rates directly es-
timated from the ACS data at different levels of aggregation (using survey weights) related to
citizenship, English proficiency, race/ethnicity, educational level, age, age of AIAN persons, and
foreign birth, as well as average time in the United States. We explored three levels of aggregation
for ACS covariates to be included in the models. At the highest level are covariates calculated by
aggregating all domains within an LMG in each state. At the second level are covariates for the
specific (Jur or AIA) geography across all persons regardless of LMG. The third covariate type
is computed for specific domains (Jur or AIA coupled with the single LMG). We considered the
following covariates, displayed by type:

State-Level Covariates

C1 Logit-transformed proportion of citizenship among voting-age persons by LMG

C2 Logit-transformed proportion of limited English-proficiency among citizens by LMG

Geography Specific Covariates

C3 Proportion of non-Hispanic White or non-Hispanic Black African-American persons among
voting-age persons in Jur or AIA

C4 Proportion of no-college education among voting-age persons in Jur or AIA

C5 Average person count per housing unit among voting-age persons in Jur or AIA

C6 Average age among voting-age persons in any AIAN LMG in Jur or AIA

C7 Logit-transformed fraction of voting-age persons in Jur or AIA with no-college education

C8 Proportion of other language spoken at home among voting-age persons in Jur

C9 Average age among voting-age persons in Jur
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C10 Proportion of foreign-born persons among voting-age persons in Jur

C11 Average years in US (as of 2014) among voting-age foreign-born persons in Jur

C12 Logit-transformed proportion of foreign-born persons among voting-age persons in Jur

Geography-LMG Specific Covariates

C13 Logit-transformed proportion of foreign-born persons among voting-age persons in (Jur,
LMG)

C14 Average years in US by 2014 among voting-age foreign-born persons in (Jur, LMG)

C15 Logit-transformed proportion of no-college education among voting-age persons in (Jur, LMG)

The synthetic covariates C1 and C2, the proportions at the State level, were motivated by
our objective to estimate proportions of CIT within VOTAG, LEP within CIT, and ILL within
LEP. Synthetic survey rate-variables, in frequent Census Bureau and survey-methodology parlance
[Rao and Molina, 2015, Sec. 3.2], are those defined from a level of geography higher than the one
of primary interest. Such covariates were previously introduced and advocated in a small-area
context, for confidence intervals of very small ACS rates by Slud [2012]. Generally, these state-level
survey-weighted direct ratio estimators of CIT and LEP rates by LMG are stable but do not reflect
local Jurisdiction-level variation of these rates.

The second category, Geography Specific Covariates, is the main source of predictive variables
for the models we developed. Although we considered other ACS covariates for citizenship and
LEP proportions listed in the Geography-LMG Specific Covariates category above, only covariate
C13 was found to be usefully predictive in models for Asian or Hispanic (not AIAN) LMGs. See
Sections F.1 and F.2 for exact information on the covariates used in each LMG model.

Note that all of these covariates are taken from the ACS itself, meaning that each is a survey
estimate and thus subject to sampling error. Further, because both the covariates and outcomes
are from the same survey data, their sampling errors may be correlated, which could complicate
variance estimation. For the most part this is not an issue for the State- or geography-specific
covariates because these are generally based on much larger samples than the geography-by-LMG
specific outcomes. We do not here consider the effect of errors in variables along the lines of Ybarra
and Lohr [2008], but may do so in future research.

3.2 Dirichlet-Multinomial Model

After extensive model exploration, Dirichlet-multinomial was chosen as the basic model form for all
of the LMG-specific Jurisdiction models and the separate AIAN LMG-specific AIA models. In each
model, the outcomes CIT, LEP, and ILL are viewed as combinations of four mutually exclusive
categorical outcomes from independent multinomial trials after conditioning on given random-effect
parameters. The underlying expected proportions of CIT among VOTAG, LEP among CIT, and
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ILL among LEP are each parameterized as a logistic regression in terms of specified covariates,
or in the case where no covariates are used, as a constant. The data used to fit the models were
proportions obtained from direct survey-weighted ratio estimators along with sampled voting-age
person counts. The exact form of the resulting Dirichlet-multinomial model with logistic-regression
fixed effects can be seen in Appendix D along with the prediction formulas.

3.3 Model Fitting and Model Classes

The 68 LMGs vary widely on a number of characteristics relevant to the statistical model. The
estimated proportions of LMG national populations that are respectively citizen, LEP, and illit-
erate vary widely (Table 3). In some AIAN LMGs, all or almost all sampled voting-age persons
are citizens and literate. The models suitable for LMGs that fell into these extreme cases were
necessarily very simple and special.

Table 3: Quantiles across LMGs of national estimates of nested CIT, LEP, and ILL proportions.

Direct Ratio Estimates Min Q1 Median Q3 Max

CIT proportion among VOTAG 0.42 0.80 0.99 1.0 1.0
LEP proportion among CIT 0.00 0.01 0.02 0.19 0.52
ILL proportion among LEP 0.00 0.02 0.07 0.11 0.37

Next, LMGs vary in their size, both in the total ACS sample size nationally (approximately
proportional to the population size) and in the number of areas (Jurisdictions or AIAs) where at
least one person is sampled. The number of areas with positive sample for a LMG is especially
important because the small area models we use are area-level (as opposed to unit-level), meaning
the number of observations is equal to the number of areas included in the model. The number
of observations has a crucial bearing upon the number of covariates that should be used in the
model. The number of parameters (covariates) to use in specifying statistical models should gen-
erally increase at most proportionately and usually at a slower rate as a function of the number
of observations. As a result, in some of the smallest LMGs in the data, the small number of
observations made it suitable to use no covariates if no very strong predictor was available. See
Table 4 for a summary across the 68 LMGs of the number of Jurisdictions and AIAs with LMG
voting-age sample thresholds. The table shows that among the 68 LMGs, the median number of
Jurisdictions with at least 5 sampled VOTAG persons was 83. The minimum amongst the LMGs
was 8 Jurisdictions, and the maximum was 4640 Jurisdictions.

A third type of variation across LMGs was in the predictiveness of the covariates for LMG rates
of citizenship and LEP. Therefore, instead of a single model used for all LMGs and geographies
(Jurisdictions and AIAs), we developed classes of models depending on the characteristics of the
LMG. Then, inside those classes we created levels of models depending on the number of observa-
tions and the ability of the iterative algorithms used in fitting maximum likelihood (ML) estimators
to the model to meet certain convergence criteria. For full details see Appendix F.
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Table 4: Summary across 68 LMGs of the number of Jurisdictions and AIAs with LMG voting-age
sample thresholds, based on 5-year ACS 2010-2014 data.

Summary across LMGs
Min Q1 Median Q3 Max

Jurisdictions with
> 0 sampled LMG VOTAG 66 265.2 554 1561 6837
≥ 3 sampled LMG VOTAG 15 64 156 605 5460
≥ 5 sampled LMG VOTAG 8 35.75 83 388.5 4640

Summary across 51 AIAN LMGs
Min Q1 Median Q3 Max

AIAs with
> 0 sampled LMG VOTAG 4 33 55 116 349
≥ 3 sampled LMG VOTAG 1 11.5 20 54 272
≥ 5 sampled LMG VOTAG 0 7 16 36.5 241

3.4 Model Exploration

While each of the outcomes CIT, LEP, and ILL could have been fitted to separate models within
each LMG, and this was done in early exploratory model-fitting, it was judged to make more sense
to account for the nesting of these categories by fitting a single model using all three outcomes
simultaneously.

All model exploration was done using 2012 ACS 5-year data instead of the 2014 5-year data on
which the final models, estimates, and determinations were made. The three main areas of model
exploration were 1) the general form of the model, 2) the specific covariates, and 3) the use of LMG
numbers of Jurisdiction-level observations to result in different model classes defined by degree of
model complexity. Early in the process, several general model forms were explored and compared to
one another, in terms of AIC or BIC and descriptive plots of outcome proportions versus fixed-effect
model-based predictions, as well as indications of proper convergence of ML estimators. Besides
the Dirichlet-multinomial model, a hierarchical Beta-binomial model similar to that used in the
2011 determinations [Joyce et al., 2012, 2014] was considered. The Dirichlet-multinomial model
was ultimately chosen because it was found to be easier to interpret and fit the data better in early
comparisons. Within the general Dirichlet-multinomial model framework, several variations were
explored. These included disaggregated models, in which models or model parameters would be
estimated separately for groups of areas defined by size (small/large) or type (county/MCD). Any
gains in fit from such split models turned out to be more than offset by the decrease in the ability
to “borrow strength” from medium or large areas in order to estimate the attributes of smaller
areas. Another variant explored was to model the ILL proportion among LEP persons separately
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from (CIT, LEP) within VOTAG. It was decided that this approach would have added unnecessary
complexity to the process.

Two major changes in the modeling came as a result of model exploration. The first was
the decision to create models for AIAN LMGs of AIAs separate from the models for those same
LMGs within Jurisdictions. In the 2011 determinations [Joyce et al., 2012, 2014], model parameters
concerning the Jurisdictions encompassing the AIAs were used to estimate the relevant quantities
within the AIAs. However, descriptive statistics showed that in some AIAN LMGs the CIT,
LEP, and ILL proportions differed markedly when calculated amongst all LMG persons from those
calculated amongst only LMG persons in AIAs. Therefore, we changed our strategy to model
AIAN LMGs in AIAs separately, using data only from persons living on AIAs. The second major
change arose in specifying the way in which the random Jurisdiction-to-Jurisdiction variability of
CIT, LEP and ILL proportions depends on sample sizes within those Jurisdictions. This can be
regarded as the variability of the random-effect part of the occurrence rates within domains. In
typical formulations of Dirichlet-multinomial models, the distribution of such random effects would
not vary with the size of the domains, but we found improved model fit by allowing the variance
of these random effects to vary inversely with the square root of sample size in each domain.
(See Appendix D for additional information on this parameterization.) This change resulted from
examining model diagnostics. When considering the disaggregated models mentioned above, we
noticed that the concentration (inverse-variance) parameter for random effects was estimated to be
much larger in larger populated areas. This pattern held across different LMGs and eventually led
us to the square-root of sample size parameterization of concentration.

To better illustrate the comparison of models, in Table 5 we show, for selected Asian and
AIAN LMGs, the Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC)
for three different Jurisdiction model specifications. BIC and AIC are common metrics used in
model selection and are based upon the maximized log-likelihood and model complexity. For both
of these metrics smaller values are preferred. In our examination of the BIC and AIC of various
models we searched for models that had sizable differences in BIC or AIC, not just those that
were statistically significantly different. In Table 5, model type 1 uses a constant random effect
parameterization and no covariates, model type 2 uses a constant random effect size specification
and four total covariates, and model type 3 uses the square root of the sample size random effect
specification and four covariates. This table shows that overall, the covariates are useful (model
type 1 versus model type 2) and that the square root of sample size random effect parametrization
is preferred to that of the constant parametrization (model type 3 versus model type 2). Similar
comparisons, along with model diagnostics such as those in Section 5 applied to the 2012 data were
used to choose the models ultimately used for the predictions.
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Table 5: BIC and AIC comparison for Jurisdiction models under three different model specifications,
based on 2012 ACS 5-year data, for selected LMGs.

LMG Model Type BIC AIC

1 13454.9 13439.4
ASIAN 1 2 13348.4 13312.3

3 13079.5 13043.4

1 1351.4 1342.5
ASIAN 2 2 1315.4 1294.5

3 1304.6 1283.7

1 14697.2 14681.6
ASIAN 3 2 14403.2 14366.8

3 14226.6 14190.2

1 8897.4 8883.2
ASIAN 4 2 8819.5 8786.3

3 8606.8 8573.6

1 2383.7 2367.2
AIAN 1 2 2369.2 2330.7

3 2319.4 2280.9

1 2277.5 2266.7
AIAN 2 2 2133.6 2108.4

3 2085.6 2060.4

1 1922.3 1908.0
AIAN 3 2 1880.4 1846.9

3 1830.0 1796.5

1 8768.2 8751.6
AIAN 4 2 8624.4 8585.8

3 8414.7 8376.1

4 Variance and MSPE Estimation

Because the justification of model-based prediction of domain proportions in the VRA context is
based largely on the reduced variability of those predictions by comparison with direct survey-
weighted estimation, it was also necessary to develop methodology for estimation of expected
squares of model-based mean-squared prediction errors for comparison with the variances of unbi-
ased direct-method estimators. It is important to establish and fix terminology first. We generally
refer to the statistical approximation of unknown constants (parameters and deterministic functions
of them) as estimation. This standard terminology applies also to direct-method (approximately)
unbiased estimation of domain totals and proportions in a finite-population context.
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In general, mean-squared estimation errors are decomposed algebraically into estimation vari-
ance added to the square of estimation bias. When the estimates are unbiased or approximately
so, as is true for the direct-method survey estimators, the bias-squared term is negligible and the
mean-square discrepancies between the estimates and their targets are variances, and we refer to
them in that way. By contrast, within statistical models that posit the unknown domain totals
and proportions as random variables incorporating both constant parameters and random effects,
statistical approximations of those target quantities as functions of data are called predictions and
(since they may be biased) their expected squared discrepancies from their targets are called Mean
Squared Prediction Errors (MPSEs). Thus in much of what follows, we compare Variances of Direct
survey-weighted estimators with MSPEs of model-based predictors. When a single term is needed
to refer to both measures, we sometimes use ‘Variance Estimation’ as in some subsection headings
in place of the formally more inclusive ‘MSPE Estimation’. In later theoretical sections on this
topic such as Appendix G, we will maintain the MSPE terminology.

The small area models specify the proportion of CIT, LEP, and ILL persons within voting-age
persons for a given LMG within each geographic area. For estimation purposes, we treat the direct
survey-weighted estimates of voting-age LMG persons in each Jurisdiction as the dependent vari-
ables in data; however, these quantities are actually estimates themselves and subject to sampling
variability. In order to account for both the sampling variance and the model-parameter uncer-
tainty in making our predictions, we developed a novel method for making the estimates of variance
from our model estimators.

4.1 ACS Direct Estimate Variance Estimation

The ACS utilizes a method called Successive Difference Replication (SDR) [Wolter, 1984, Fay and
Train, 1995] to estimate the variance of direct estimates from the data. SDR is a type of balanced
repeated replication (BRR), a more general class of replicate weight methods. In order to estimate
the variance of any survey quantity in the ACS, the final survey weights along with eighty replicate
weight sets are used to calculate

V̂ (θ̂0) =
4

80

80∑
i=1

(θ̂r − θ̂0)2, (1)

where θ̂0 is the direct estimate of the survey quantity using the final survey weights and θ̂r is the
estimate using replicate weight set r. This standard version of the ACS SDR formula assumes that
the sampling fraction is negligible, something that is usually but not always true for the (LMG, Jur)
or (LMG, AIA) domains. See ACS [2014] for additional details about ACS variance estimation.

4.2 Parametric Bootstrap Variance Estimation

Parametric bootstrap methods are common in model-based estimation methods such as small-area
estimation. The general idea is first to replace unknown model parameters with estimates from the
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actual data (such as maximum likelihood estimates); then to sample a large number of independent
identically distributed data-replicates from the specified model. Next, for each sampled replicate of
the data, the model is re-estimated and predictions made based on those model estimates. Finally,
a Monte Carlo variance is calculated based on the replicates of the model estimates. Some authors,
such as Carlin and Louis [2009, p. 247], suggest that for purposes of variance estimation, it might
be better to account for (posterior) variability in the estimated parameters by using posterior-
sampled parameter values in the parametric-bootstrap resampling of the data. In other words,
a Bayesian point of view suggests incorporating variability of parameter estimates at the stage
of generating replicate data samples. See Shao and Tu [2012] for additional background on the
parametric bootstrap.

4.3 Hybrid BRR and Bootstrap MSPE Estimation

In order to estimate the variance of our model-based estimates, we combine BRR and parametric
bootstrap ideas into a novel hybrid approach to MSPE estimation. The general idea, related
to the point raised in the previous paragraph about accounting for parameter variability across
bootstrap samples, is that by utilizing different sets of the replicate weights within parametric
bootstrap samples, we can account for both sources of variance. Additional technical details on
the methodology, including detailed computational formulas, can be found in Appendix G and in
Slud and Ashmead [2017]. This is the method by which MSPE estimates for the model-based point
estimates were actually calculated in the public release of Voting Rights Act estimates.

The mean square prediction error (MSPE) is defined as

MSPE(θ̃) = E[(θ̃ − θ)2],

where θ̃ is the model-based prediction of the parameter θ. In Section 6, we compare the MSPE
estimates with estimated variances of the survey-weighted direct estimates.

5 Model Diagnostics

An important aspect of our class of small area models is that the prediction for a given area is
a weighted average of the direct survey estimate and the regression estimate for that area. See
equations (8), (9), and (10) in Section D for full mathematical details. For clarity, we use the
term ‘Full-Model-Prediction’ (FMP) to describe the Dirichlet-multinomial prediction incorporating
predicted random effects. The regression estimate uses only the fixed-effect coefficient predictors
and coincides with what others call ‘synthetic’ estimates obtained by expressing the marginal mean
as a function of parameters and then substituting the ML estimators of those parameters, so we
call it the ‘Marginal Mean’ (MM) estimate. The target of the MM estimate is the mean outcome
averaged over the unobserved random effect under the model. We use the term ‘Direct Survey’ (DS)
in what follows for the standard survey-weighted estimator (of a total or proportion) based on the
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survey design and data rather than on a model. The relative weight in the FMP weighted-average
given to the DS versus the MM estimate for a given geography-LMG domain is determined by
the sample size in that domain together with the precision parameter in the model. The weights
on these two components, derived from theoretical considerations (cf. Appendix D), give greater
weight to the DS estimates in domains with larger sample size. Domains with very large sample
size, and therefore very precise DS estimates, have FMPs that are weighted almost entirely towards
the DS, relying very little on the MM estimate. By contrast, domains with small sample size rely
heavily on the MM because their DS estimates are unreliable. For model diagnostics, comparisons
between the DS and MM estimates and the FMPs offer valuable insights. We use only a small
number among the many models as examples of the model diagnostics, illustrating the common
patterns and properties found across the models. While the fitted Dirichlet-multinomial models
make predictions for CIT, LEP, and ILL, only the LEP and ILL predictions from the models are
used in the coverage determinations. Moreover, since the illiteracy rate criterion for coverage was
generally met regardless of the estimated model, we focus our attention on LEP, the most sensitive
modeled quantity.

5.1 Residual Analysis

We begin with examples of the relation between the DS and the MM estimates. Figure 3 shows
both for estimates of the LEP proportion among VOTAGs each plotted against their respective
sample sizes for a particular Asian LMG Jurisdiction model. This figure illustrates a few features
of the data and models. First, notice that the variation in the direct survey predictions themselves
decreases as the sample size increases. For small sample sizes, there is increased sampling variability
and there are many more extreme data points, both low and high. Second, notice that the MM
estimates are much less variable than their DS counterparts, and the extreme DS estimates (near
1.0 or 0.0) are the ones from which the corresponding MM estimates are most different.

Figure 4 plots the MM estimate against the DS estimate for both the CIT among VOTAG
and LEP among CIT proportions for the 2014 Jurisdiction model for the same medium-sized Asian
LMG as in Fig. 3. This figure shows that the covariates are useful in predicting the direct estimates.
Specifically with respect to LEP proportions, the figure shows that when DS estimates are extremely
large (near 1.0), their MM estimates are smaller, while extremely small DS estimates (near 0.0) are
smaller than their corresponding MM estimates. Thus for LEP proportions, differences between
MM and DS estimates tend to be larger when the DS estimates are below 0.1 or above 0.4.

Figure 5 shows the residuals between the DS and MM estimates for proportions both of CIT
within VOTAG and LEP within CIT. The MM estimates are more accurate in predicting the DS
value for areas with larger sample size.
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Figure 3: Plots of Direct Survey (DS) and Marginal Mean (MM) estimates of LEP proportion within
VOTAG each versus sample size by Jurisdiction, for the 2014 Jurisdiction Model on a medium-sized
Asian LMG, restricted to Jurisdictions with sample ≥ 5.
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Figure 4: Estimates of proportions of CIT within VOTAG and LEP within CIT, Direct Survey
(DS) versus Marginal Mean (MM) estimates for the 2014 Jurisdiction Model on the same Asian
LMG and Jurisdictions. (with sample ≥ 5) as in Figure 3.
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Figure 5: Direct Survey minus Marginal Mean estimate differences for CIT proportions within
VOTAG and for LEP within CIT versus sample size, for 2014 Jurisdiction model on the same
Asian LMG and Jurisdictions (with sample ≥ 5) as in Figure 3.
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5.2 Lack-of-Fit Diagnostics

We attempted to develop models that accurately describe the observed data. Lack-of-fit method-
ology based on a parametric bootstrap [Ashmead and Slud, 2017] provided one set of tools useful
in assessing the quality of that description. The rationale behind these methods was that if we
assume our fitted models are correct and simulate values from them, then they should look similar
to the actual observed results. In practice we simulate from the models many times and provide
the reference distribution for a statistic codifying an important feature. Then we calculate the
same statistic for the observed data. Referring the observed statistic (called a ‘diagnostic’) to the
distribution of the statistic from the parametric bootstraps provides a formal comparison. The
central region of the distribution can be regarded as a probable range for the statistic under the
model, and an observed statistic falling there is deemed compatible with the model. If the observed
statistic is extreme or completely outside the range of observed values for the distribution, that
indicates that the assumed model is not consistent with the observed data.

Figures 6 and 7 summarize the sum of squared errors lack of fit diagnostic (given by formula
(45) in Appendix H), specifically for the LEP proportion among voting-age persons in the models.
The statistic of interest resembles the sum of the squared differences between the DS and MM
estimates of LEP proportion for each area, but assesses mostly the random-effect aspects of the
model. This diagnostic does not speak to the validity of the model prediction for any single area

19



or areas, but rather to the variability of predictions of the model in general. See Appendix H for
additional technical details.

In Figures 6 and 7 we plot the lack of fit quantile (47) for all LMGs for which a model was
used respectively in Jurisdictions and in AIAs, separately within the AIAN and Asian/Hispanic
LMGs. The LMGs are first sorted by the quantiles of their lack of fit statistics each within its own
bootstrapped reference distribution. The points are plotted with y-coordinates in sequence (1 to 17
for Asian/Hispanic, 18-68 for AIAN) and with their quantiles as x-coordinates. Points to the left
of the 0.025 dashed line indicate observed statistics smaller than those typically simulated by the
assumed model. Points to the right of the 0.975 dashed line indicate observed statistic values larger
those typically simulated by the assumed model. Overall, we find that the great majority of models
do not show evidence of lack of fit according to this measure. Within the set of AIAN LMGs,
both figures show the quantiles increasing approximately linearly with sequence numbers, as one
would expect for properly specified models with ordered Uniform(0, 1) p-values, and the number
of extreme AIAN-LMG quantiles (5 in Fig. 6 and 3 in Fig. 7) are hardly larger than the expected
number 51 · 0.05. However, an excess of models among the Asian and Hispanic LMGs in Figure 6
showed evidence of lack of fit by their extreme values, 7 intead of the 17 · 0.05 ≈ 1 that would be
expected if all models were correct. These extreme LMGs tended to be large, and the diagnostic
is more sensitive for LMGs containing areas with especially large sample sizes. These diagnostics
show that there is room for improving the models for Asian/Hispanic LMGs in the future.
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Figure 6: Lack of fit summary for predicted LEP counts in Jurisdiction models. Diagnostic (45)
bootstrap quantile is plotted on horizontal axis, and numerical sequence (1 to 17 in Asian/Hispanic
and 18 to 68 in AIAN) plotted on vertical axis in increasing order of the quantiles.

Quantile

0.025 0.25 0.5 0.75 0.975

Asian and Hispanic LMGs
AIAN LMGs
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Figure 7: Lack of fit summary for predicted LEP counts in AIA models. Diagnostic (45) bootstrap
quantile is plotted on horizontal axis, and numerical sequence (1 to 51) of AIAN plotted on vertical
axis in increasing order of the quantiles.
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6 Results Summary

In this section, we focus on results comparing variances for the proportions of LEP to VOTAG
persons in the Jurisdiction (LEPpropJur) or AIA (LEPpropAIA), specifically comparing estimated
MSPEs for the modeled estimates versus variances for the DS estimates. We do not discuss the esti-
mated variance of the illiteracy rate (ILLrateJur or ILLrateAIA), because as mentioned previously,
the locally domain-estimated illiteracy rate is almost always greater than the national rate. The
overall conclusion is that the small area models reduce the estimated variance, especially in those
Jurisdictions or AIAs with large DS variance estimates or point estimate near the 0.05 threshold.
We detail our findings in the following tables and figures.

Table 6 shows the estimated percent variance reduction of the LEP proportion (LEPpropJur)
for Jurisdictions among all LMGs for which a model was produced. The Jurisdictions are first
divided into deciles by their ACS directly estimated variance, then within those deciles we calculate
the median and (95th, 75th, 25th, 5th) percentiles of the estimated variance reduction. From the
median reduction, this table shows that in general the variance of model-predicted LEP proportions
was less than those of their DS counterparts, and the reduction tended to be systematically larger
for Jurisdictions with larger ACS (DS estimated) variance. Those with the largest DS variance (the
Top Decile) had the greatest reductions in variance. However, in some cases (at least 5%, across
the board for all deciles of DS Variance, and at least 25% for the bottom four DS Variance deciles),
the model-based predictions had a larger estimated MSPE than the DS variance estimates.

Table 6: Estimated percent variance reduction of predicted LEP proportion for Jurisdictions
(LEPpropJur) by decile of direct ACS SDR variance estimates.

# of (AIA, LMG) Percent Variance Reduction
Estimates 95th Percentile 75th Percentile Median 25th Percentile 5th Percentile

Top Decile* 1768 98.26 90.30 73.35 40.91 -32.27
2nd Decile 1767 98.40 87.53 68.29 31.95 -69.66
3rd Decile 1768 97.70 83.19 58.38 17.67 -108.30
4th Decile 1767 97.74 82.25 54.25 12.48 -152.09
5th Decile 1768 97.87 82.91 53.86 7.36 -171.17
6th Decile 1767 97.50 81.24 48.65 7.07 -188.06
7th Decile 1768 97.28 79.83 47.89 -0.56 -250.49
8th Decile 1767 96.00 76.50 42.61 -18.54 -388.35
9th Decile 1768 96.89 75.97 34.33 -49.88 -606.54
Bottom Decile 1768 97.67 77.15 25.12 -115.67 -1249.01

*Decile of largest ACS SDR variance estimates. Percent variance reduction calculated only among

Jurisdictions with non-zero point and variance estimates.

Table 7 gives the estimated percent variance reduction of the LEP proportion (LEPpropAIA) for
AIAs among all AIAN LMGs for which a model was produced. It shows a pattern similar to that of
Table 6. The median variance reduction is largest for the those with the largest DS variances and
decreases with the DS variance. While there are some estimates for which the MSPE of modeled

23



predictions was larger, the majority of such estimates saw a reduction in variance.

Table 7: Percent variance reduction of estimated LEP proportion for AIAs (LEPpropAIA) by decile
of direct (SDR) ACS variance estimates.

# of (AIA, LMG) Percent Variance Reduction
Estimates 95th Percentile 75th Percentile Median 25th Percentile 5th Percentile

Top Decile* 61 97.62 92.93 80.40 44.24 -67.48
2nd Decile 60 95.62 87.05 54.17 10.84 -180.99
3rd Decile 60 96.92 84.23 60.05 -15.89 -120.41
4th Decile 61 95.59 84.53 58.94 -4.87 -162.55
5th Decile 60 98.77 93.29 58.10 -27.32 -350.97
6th Decile 60 98.50 89.15 71.32 6.52 -376.28
7th Decile 61 95.91 66.20 30.80 -94.14 -555.53
8th Decile 60 98.95 84.86 28.94 -116.90 -1519.83
9th Decile 60 98.56 81.45 39.32 -146.99 -1269.56
Bottom Decile 61 96.65 62.46 -14.00 -142.30 -1048.36

*Decile of largest ACS SDR variance estimates. Percent variance reduction calculated only among AIAs

with non-zero point and variance estimates.

In order to take into account not only an estimate’s variance but also its value, we calculated
the CV for the LEP proportion (LEPpropJur, LEPpropAIA), both for the model predictors and the
direct estimators, for each of the modeled domains, (Jur, LMG) or (AIA, LMG), in Table 8. The
Table shows that the models dramatically reduced the number of domains with extremely large
(> 1) CVs and modestly reduced the number of domains with large (> 0.6) CVs.

Table 8: Number of modeled domains with non-zero SDR CVs which have large LEP proportion
(LEPpropJur, LEPpropAIA) CVs.

Total Estimates SDR-CV >0.6 MSPE-CV >0.6 SDR-CV >1 MSPE-CV >1

Asian, Hispanic Jurs 14461 8014 5543 4826 524
AIAN Jurs 3215 2618 1278 1914 301

AIAN AIAs 604 402 244 214 99
NB: For comparability, CVs for both the SDR and MSPE are calculated using modeled point estimates.

In Figure 2 we showed the CVs for 189 (Jur, LMG) domain estimates of LEP rate whose 90%
confidence interval includes 0.05. In Figure 8 we plot the square root of the estimated variance of
these same (Jur, LMG) domains for both the direct estimate and the model prediction to illustrate
the variance reduction. Of the 189 (Jur, LMG)s estimates, 182 were from LMGs for which a
model was fitted. For 161 of the 189 (85%) of the (Jur, LMG) domain LEP proportion estimates,
the estimated variance of the model predicted proportion was smaller than that of the directly
estimated proportion. Additionally, many of the variance reductions were large compared with the
percentages by which MSPEs (rarely) exceeded the SDR variances.

We provide several further summaries of the comparisons in variances of coverage-relevant
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Figure 8: Comparison of square root of the estimated variance for 189* (Jur,LMG) domain estimates
of LEP proportion (LEPpropJur) whose 90% directly estimated CI includes 0.05
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*182 of 189 (Jur, LMG) domain estimates were from LMGs for which we are able to fit a model

domain-level estimates between the direct SDR variances and those MSPEs that resulted from
the Dirichlet-multinomial small-area estimation techniques actually used along with the variance
estimation technique described in Section 4.3. These comparisons apply only to those (LMG,Jur)
or (LMG,AIA) domains for which the Dirichlet-multinomial models could be fitted, according to
the steps described in Appendix F.1. As we have seen in Tables 6 and 7, the small-area estimation
methodology resulted in reduced variances for the most part, but in some domains the variances ac-
tually increased. We characterize in greater detail those domains and estimates for which variances
increased and decreased, in order to understand better the effect that the small-area estimation
methodology had on the precision of the statistical decisions leading to determinations of coverage
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under Section 203(b) of the Voting Rights Act.
Table 9 shows the medians of MSPE over SDR variance ratios for LEP-proportions (LEPpropJur)

across all LMGs for which Jurisdiction models were fit, separately grouped by Asian and Hispanic
LMGs and by AIAN LMGs. Within each cell defined by model-based point estimates and CVs
(defined from the model-based point estimates and SDR Variances), we calculate the median ratios
to quantify variance improvement for subsets of Jurisdictions. Ratios less than one show a decrease
in typical estimated variance for the model-based estimates compared with the direct estimates.
The table shows that the model-based MSPEs improve noticeably over the SDR variances of LEP-
proportion estimates, except in Jurisdictions where the point estimates are particularly small. The
improvement tends to increase with the point estimate and for each range of estimates with the
CV. In the final row of each of the upper and lower tables, which includes the Jurisdictions with
estimated LEP-proportions near the 0.05 threshold, the MSPEs are considerably lower than SDR
variances. Similar patterns are observed in tables analogous to Table 9 (not shown) in which median
ratios are replaced by upper quartiles, and where medians or upper quartiles of Jurisdiction-specific
ratios (MSPE over SDR variance) are replaced by ratios of the corresponding quantiles of MSPEs
divided by quantiles of SDR variances.

Another cross-tabulation of variance comparisons makes the patterns clearer. In Table 10 we
show the ratios of upper quartiles of MSPEs over upper quartiles of SDR-Variances for LEP-
proportions (LEPpropJur), within cells of domains defined through ranges of model-based point
estimates cross-classified with VOTAG sample-sizes. Note that in this table the ratios of quantiles
tend to increase from left to right, since sample sizes are generally inversely related to CV. Also,
the ratio of MSPE and variance quantiles tend to be smaller and less variable across cells than
the quantiles of MSPE over variance ratios. In Table 10, larger sample sizes are associated with
large Jurisdictions, where SDR variances were generally small. The reduction in MSPE versus SDR
variance in these large Jurisdictions, while systematic, was smaller than in Jurisdictions with larger
SDR variances.

The Jurisdictions likely to meet the Voting Rights Act Section 203(b) coverage criteria tended
to be those, as seen in Figure 2, where the LEP-proportion confidence interval covered the threshold
value of 0.05. The last rows of each upper and lower Table in Tables 9 and 10 all show dramatic
reduction in MSPE compared with SDR-variance, substantiating that among Jurisdictions with
larger LEP-proportion point estimates there was greater accuracy in assessing the coverage criteria
using model-based estimates compared with the direct survey estimates.
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Table 9: Medians of ratios of MSPEs over SDR variances for estimates of LEP proportion
(LEPpropJur) for LMGs with fitted models, cross-classified by model-based point estimate and
CV (using SDR variance). Upper table: Asian & Hispanic LMGs; Lower table: AIAN LMGs.
Cell entries are median ratios followed (in parentheses) by numbers of Jurisdictions in the cell.

Asian & Hispanic LMGs CV range
Point Estimate Range (0,0.2] (0.2,0.4] (0.4,0.6] (0.6,1] (1,2]

(0, 0.002] 0.996 1.329 1.050 0.595 0.160
(318) (1659) (1860) (2525) (4044)

(0.002, 0.005] 0.824 0.866 0.678 0.439 0.156
(294) (466) (386) (444) (582)

(0.005, 0.01] 0.715 0.710 0.493 0.382 0.138
(216) (237) (136) (135) (142)

(0.01, 1] 0.751 0.605 0.494 0.305 0.119
(512) (275) ( 88) ( 84) ( 58)

AIAN LMGs CV range
Point Estimate Range (0,0.3] (0.3,0.6] (0.6,1] (1,2]

(0,.001] 1.808 1.603 0.710 0.058
( 82) (420) (654) (1756)

(.001,.002] 1.809 1.156 0.551 0.039
( 5) ( 24) ( 21) (106)

(.002,1] 0.588 0.664 0.414 0.045
( 32) ( 34) ( 29) ( 52)
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Table 10: Ratios of Upper Quartiles (Q3) of MSPEs over Q3 of SDR-Variances for LEP-proportions
(LEPpropJur), for LMGs with fitted models, cross-classified by (model-based) point estimate and
VOTAG sample-size. Upper table: Asian & Hispanic LMGs; Lower Table: AIAN LMGs. Cell
entries are ratios of Q3’s followed (in parentheses) by numbers of Jurisdictions in the cell.

Asian & Hisp LMGs Sample-size range
Point Estimate Range (0, 6] (6, 10] (10, 20] (20, 50] (50,∞]

(0,.002] 0.190 0.426 0.576 0.874 0.840
(3542) (1445) (1891) (1802) (1726)

(.002,.005] 0.165 0.350 0.427 0.552 0.747
( 476) ( 233) ( 266) ( 388) ( 809)

(.005,.01] 0.211 0.255 0.468 0.472 0.582
( 113) ( 59) ( 75) ( 141) ( 478)

(.01,1] 0.188 0.187 0.417 0.593 0.632
( 34) ( 25) ( 55) ( 94) ( 809)

AIAN LMGs Sample-size range
Point Estimate Range (0, 6] (6, 10] (10, 20] (20, 50] (50,∞]

(0,.001] 0.030 0.085 0.162 0.330 0.792
( 924) ( 360) ( 435) ( 512) ( 681)

(.001,.002] 0.034 0.076 0.174 0.174 0.802
( 75) ( 18) ( 8) ( 19) ( 36)

(.002,1] 0.030 0.108 0.056 0.1514 0.508
( 31) ( 10) ( 9) ( 10) ( 87)
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A Section 203 of the Voting Rights Act of 1965

(a) Congressional findings and declaration of policy

The Congress finds that, through the use of various practices and procedures,
citizens of language minorities have been effectively excluded from participa-
tion in the electoral process. Among other factors, the denial of the right to
vote of such minority group citizens is ordinarily directly related to the un-
equal educational opportunities afforded them resulting in high illiteracy and
low voting participation. The Congress declares that, in order to enforce the
guarantees of the fourteenth and fifteenth amendments to the United States
Constitution, it is necessary to eliminate such discrimination by prohibiting
these practices, and by prescribing other remedial devices.

(b) Bilingual voting materials requirement

(1) Generally

Before August 6, 2032, no covered State or political subdivision shall
provide voting materials only in the English language.

(2) Covered States and political subdivisions

(A) Generally

A State or political subdivision is a covered State or political
subdivision for the purposes of this subsection if the Director
of the Census determines, based on the 2010 American
Community Survey census data and subsequent American
Community Survey data in 5-year increments, or comparable
census data, that –

(i)(I) more than 5 percent of the citizens of voting age
of such State or political subdivision are members of
a single language minority and are limited English-
proficient;
(II) more than 10,000 of the citizens of voting age of
such political subdivision are members of a single lan-
guage minority and are limited English-proficient; or
(III) in the case of a political subdivision that contains
all or any part of an Indian reservation, more than 5
percent of the American Indian or Alaska Native cit-
izens of voting age within the Indian reservation are
members of a single language minority and are limited
English-proficient; and
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(ii) the illiteracy rate of the citizens in the language mi-
nority as a group is higher than the national illiteracy
rate.

(B) Exception

The prohibitions of this subsection do not apply in any politi-
cal subdivision that has less than 5 percent voting-age limited
English-proficient citizens of each language minority which
comprises over 5 percent of the statewide limited English-
proficient population of voting-age citizens, unless the politi-
cal subdivision is a covered political subdivision independently
from its State.

(3) Definitions
As used in this section–
(A) the term “voting materials” means registration or voting
notices, forms, instructions, assistance, or other materials or
information relating to the electoral process, including ballots;
(B) the term “limited English-proficient” means unable to speak or
understand English adequately enough to participate in the electoral
process;
(C) the term “Indian reservation” means any area that is an
American Indian or Alaska Native area, as defined by the Census
Bureau for the purposes of the 1990 decennial census;
(D) the term “citizens” means citizens of the United States; and
(E) the term “illiteracy” means the failure to complete the 5th
primary grade.

(4) Special Rule
The determinations of the Director of the Census under this subsec-
tion shall be effective upon publication in the Federal Register and
shall not be subject to review in any court.

(c)-(d) [Not given here. See U.S. Code, Title 52, Subtitle I, Chapter 105,
§10503.]

(e) Definitions
For purposes of this section, the term “language minorities” or “language
minority group” means persons who are American Indian, Asian American,
Alaska Native, or of Spanish heritage.
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B Language Minority Groups

Table 11: 2016 Language Minority Groups.

Hispanic Houma

Asian Indian Iroquois

Bangladeshi Kiowa

Cambodian Lumbee

Chinese Menominee

Filipino Mexican American Indian

Hmong Navajo

Indonesian Osage

Japanese Ottawa

Korean Paiute

Laotian Pima

Malaysian Potawatomi

Pakistani Pueblo

Sri Lankan Puget Sound Salish

Thai Seminole

Vietnamese Shoshone

Other Asian Sioux

Apache South American Indian

Arapaho Spanish American Indian

Blackfeet Tohono O’Odham

Canadian and French Indian Ute

Central American Indian Yakama

Cherokee Yaqui

Cheyenne Yuman

Chickasaw All other AI tribes

Chippewa AI tribes, not specified

Choctaw Alaska Athabascan

Colville Aleut

Comanche Inupiat

Cree Tlingit-Haida

Creek Tsimshian

Crow Yup’ik

Delaware Alaskan Native Tribes, not specified

Hopi AI or AN tribes, not specified
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C Determination Flow Chart

How the Law Prescribes the Determination of Covered Areas 
under the Language Minority Provisions of Section 203 of the 

Voting Rights Act 

For State, County, County Subdivision, and American Indian and Alaska Native Areas: 

 

 

Total Population 

Total Population for Minority Groups: 

 Spanish/Hispanic/Latino
 AIAN (American Indian/Alaskan Native)
 AIAN tribal group (examples include Cherokee, Iroquois, Sioux)
 Asian
 Asian group (examples include Chinese, Filipino, Japanese)

For each Minority Group: 

Total Voting Age Population  

Total Voting Age Citizens 

For each Minority Group: 

Total Voting Age Citizens who are Limited-English Proficient 

For each Minority Group: 

Total Voting Age Citizens who have Less Than a 5th Grade Education 

Total Voting Age Citizens who are Limited-English Proficient and have Less Than a 
5th Grade Education 
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Determinations are then computed for each language minority group based on 
the following: 

If more than 5% of voting age citizens are limited-English proficient, 

OR 

If more than 10,000 voting age citizens are limited-English proficient, 

AND 

The rate of total voting age citizens who are limited-English proficient and have 

less than a 5th grade education is higher than the national rate (1.16 for the 2011 

release and  1.31 for the 2016 release).

THEN: 

The state, county, or county subdivision under consideration is covered for that 

specific minority group of Section 203 of the Voting Rights Act. 

There is a special computation for American Indian or Alaska Native areas or 
other tribal lands: 

If more than 5% of the American Indian or Alaska Native voting age citizens 
belonging to an American Indian/Alaska Native tribe are limited-English proficient 

AND 

The rate of those voting age citizens who are limited-English proficient and 
have less than a 5th grade education is higher than the national rate (1.16 for the 
2011 release and  1.31 for the 2016 release).
THEN: 

Any political subdivision(s) in which that AIA/ANA is located is covered under 
Section 203 of the Voting Rights Act. 
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D Notations and Model Definitions

The primary quantities tabulated from the ACS files are, for Jurisdictions j, AIAs a, and LMGs g:

nVjg, n
C
jg, n

L
jg, n

I
jg = the numbers of ACS sampled persons (respectively VOTAG,

CIT, LEP, ILL) in Jurisdiction j and LMG g
N̂V

jg, N̂
C
jg, N̂

L
jg, N̂

I
jg = the ACS survey-weighted estimates of total persons (respectively

VOTAG, CIT, LEP, ILL) in Jurisdiction j and LMG g
nVag, n

C
ag, n

L
ag, n

I
ag = the numbers of ACS persons (respectively VOTAG, CIT, LEP,

ILL) sampled in AIA a and LMG g
N̂V

ag, N̂
C
ag, N̂

L
ag, N̂

I
ag = the ACS survey-weighted estimates of total persons (respectively

VOTAG, CIT, LEP, ILL) in AIA a and LMG g.

Also, let N̂C
j+ denote the ACS survey-weighted estimate of the total number of voting-age citizens

in Jurisdiction j, including both LMG and non-LMG persons. Similarly let N̂C
a,+ denote the ACS

survey-weighted estimate of the total number of AIA voting-age citizens in AIA a. Note that the
set A of AIA labels a is assumed to be distinct from the set J of Jurisdiction labels, and these
labels distinguish the AIA and Jurisdiction notations.

Let (NV
jg, N

C
jg, N

L
jg, N

I
jg), (NV

ag, N
C
ag, N

L
ag, N

I
ag), NC

j+, and NC
a+ respectively denote the true pop-

ulation totals for each of the ACS survey-weighted estimates above. The quantities needed for the
determination criteria can be expressed in terms of these true population totals. For the Jurisdic-
tion level determination criteria, the primary targets of estimation are the LMG by Jurisdiction
LEP totals, LEP proportions, and ILL rates, denoted as

NL
jg ,

NL
jg

NC
j+

, and
N I

jg

NL
jg

. (2)

These can be estimated using direct ACS survey-weighted totals, respectively by

N̂L
jg ,

N̂L
jg

N̂C
j+

, and
N̂ I

jg

N̂L
jg

(3)

Similarly, the AIA-level determination criteria utilize the quantities

NL
ag

NC
a+

and
N I

ag

NL
ag

. (4)

Lastly, the state level targets of estimation determining Voting Rights Act Section 203(b) coverage
are ∑

j∈S N
L
jg∑

j∈S N
C
j+

and

∑
j∈S N

I
jg∑

j∈S N
L
jg

, (5)
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where j ∈ S ranges over all Jurisdictions in a given state S. The AIA and state level quantities
(4) and (5) can also be estimated by replacing each of their constituent totals by its direct survey-
weighted estimate.

Figure 9: Illustration of multinomial categories and population counts.

Labels VOTAG, CIT, LEP, ILL refer as in Fig. 1 to successively smaller
circular regions. Arrows terminating within colored annuli and inner-
most circle show population-count notations for the multinomial categories:
VOTAG non-CIT, CIT non-LEP, LEP non-ILL, ILL.

If these estimators were stable, they would be the design-based estimators of choice. However,
many of these weighted-total estimators are based on sampled numbers of persons in ACS that are
very small. So we are driven to develop model-based estimators for the quantities (2), (4), and
(5) in the spirit of small-area estimation [Rao and Molina, 2015]. The main idea of this approach
is that for a given LMG g many small areas (Jurisdictions or AIAs) may behave similarly with
respect to the proportions of CIT, LEP, and ILL persons among VOTAG persons (e.g. NC

jg/N
V
jg,

NL
jg/N

V
jg, N I

jg/N
V
jg) within the LMG. In addition, observable domain-specific covariates may be

used to predict these same proportions. Therefore, we model the differences across Jurisdiction or
AIA for a fixed LMG as being partly random and partly predictable in terms of covariates X. The
empirical-Bayes framework results in within-LMG estimators of citizenship, LEP, and illiteracy
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proportions that are weighted combinations of the direct estimators and model-based parameter
estimators, where the weights heavily favor the direct estimators in domains with a large sample
size and the model-based estimator in domains with a small sample size.

Now we turn to the general form of the small area models used to make the 2016 determination
estimates. The same form of model was used for Jurisdiction estimates and separately for AIA
estimates. In the formulas below, we use the notation for Jurisdictions (e.g. nVjg, N

L
jg, etc.);

however, the same general model form applies to AIAs and could be written by replacing all j
subscripts with a subscripts.

The nested characteristics (CIT, LEP, ILL) of the nVjg sampled persons in (j, g) are viewed,

conditionally given random-effect parameters, as the outcomes of nVjg independent multinomial trials
with four possible mutually exclusive outcomes: non-citizen, non-LEP citizen, literate LEP citizen,
and LEP illiterate citizen. From the direct VOTAG population estimate N̂V

jg along with estimates
of the proportions of these mutually exclusive categories, we estimate the determination-relevant
quantities (NC

jg, N
L
jg, N

I
jg). The direct survey-weighted (DS) estimates of multinomial outcome

proportions, along with number of sampled voting-age persons in (j, g), are treated as the observed
data. Then the Dirichlet-multinomial model with logistic-regression fixed effects can be written as:

nVjg

N̂V
jg

(
N̂V

jg − N̂C
jg, N̂

C
jg − N̂L

jg, N̂
L
jg − N̂ I

jg, N̂
I
jg

)
∼ Multinom(nVjg ; ωjg), (6)

where ωjg = (ω1,jg, ω2,jg, ω3,jg, ω4,jg) and

ωjg ∼ Dirichlet
(
τjg,

(
(1− µjg), µjg(1− νjg), µjgνjg(1− ρg), µjgνjgρg

))
, (7)

τjg = τog

√
nVjg , (1− µjg) + µjg(1− νjg) + µjgνjg(1− ρg) + µjgνjgρg = 1,

with

µjg =
exp(β′g XC(g))

1 + exp(β′g XC(g))
, νjg =

exp(γ′g XL(g))

1 + exp(γ′g XL(g))
.

Here X
C(g)
j and X

L(g)
j respectively denote covariate vectors for LMG g used to predict proportions

of CIT within VOTAG and of LEP within CIT.
In (7), the parameter τjg measures how concentrated the Dirichlet distribution is and can be

viewed as a prior sample size associated with the model, inversely related to the variance of the
random ωk,jg terms. The term µjg models the citizenship proportion within voting-age persons
in (j, g) like a logistic regression, and similarly νjg is a logistic-regression fixed-effect term for the
LEP-proportion among (j, g) voting-age citizens. The parameter ρg denotes the illiteracy proportion
among LEP voting-age citizens. Unlike the proportions for citizenship and LEP, we do not attempt
to model this proportion with a logistic regression. The parameterization of the concentration

term τjg = τog

√
nVjg was selected after assessing model diagnostics. See Section 3.4 for additional
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information about this modeling choice. The parameters βg, γg, ρg, and τog are jointly estimated
by maximum likelihood from the data. These estimated parameters are substituted into best-
predictors for ωjg, in order to make so-called empirical or ‘plug-in’ predictions from the model.
The predictions consist of convex combinations of the ‘Direct Survey’ (DS) and the ‘Marginal
Mean’ (MM) estimates for that area. These estimates, previously mentioned in Section 5, are
defined as follows:

DSjg =

(
N̂V

jg − N̂C
jg

N̂V
jg

,
N̂C

jg − N̂L
jg

N̂V
jg

,
N̂L

jg − N̂ I
jg

N̂V
jg

,
N̂ I

jg

N̂V
jg

)
; (8)

MMjg = ( 1− µ̂jg, µ̂jg(1− ν̂jg), µ̂jgν̂jg(1− ρ̂g), µ̂jgν̂jgρ̂g) , (9)

where

µ̂jg =
exp(β̂′g XC(g))

1 + exp(β̂′g XC(g))
, ν̂jg =

exp(γ̂′g XL(g))

1 + exp(γ̂′g XL(g))
.

The final prediction vector ω̂jg, earlier called ‘Full-Model-Predictions’ (FMPs) are convex com-
binations of (8) and (9) weighted by a function of the sample size and concentration parameter:

ω̂jg =
nVjg

nVjg + τ̂og

√
nVjg

(
DSjg

)
+

τ̂og

√
nVjg

nVjg + τ̂og

√
nVjg

(
MMjg

)
. (10)

These predictors ω̂jg can be viewed as posterior expectations of ωjg under the model given the data

(N̂V
jg, N̂

C
jg, N̂

L
jg, N̂

I
jg). We derive predictors for totals NC

jg, NL
jg, and N I

jg, in the form

ÑC
jg = nCjg + (N̂V

jg − nVjg) (1− ω̂1,jg)

ÑL
jg = nLjg + (N̂V

jg − nVjg) (ω̂3,jg + ω̂4,jg) (11)

Ñ I
jg = nIjg + (N̂V

jg − nVjg) ω̂4,jg

These predictors together with the DS estimates N̂C
j+ (or N̂C

a+, for AIAs) are then used to predict
quantities related to the determination criteria. The predictors of the state-level quantities (5)
are simply obtained by summing, separately in numerator and denominator, the predictors of the
particular state’s constituent Jurisdiction-level predictors.
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E Reference Summary of Notations and Models

Table 12: Index sets and ranges used in this report.

Notation Interpretation

j ∈ J = {1, . . . , 7862} Disjoint Jurisdictions, including 2919 counties and 4943 Minor
Civil Divisions with ACS sample in 2010-2014

g ∈ {1, . . . , 68} Language Minority Groups: 16 Asian, 51 AIAN, and Hispanic

a ∈ A = {1, . . . , 568} American Indian Areas (AIAs)

A ∈ {V,C, L, I} Person characteristics: V=VOTAG (18+), C= Citizen 18+
(CIT), L = Limited English-proficient CIT (LEP), I = Illiterate
LEP (ILL)
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Table 13: Primary quantities tabulated from ACS files, for Jurisdictions j, AIAs a, and LMGs g.

Notation Interpretation

nVjg, n
C
jg, n

L
jg, n

I
jg The numbers of ACS sampled persons (respectively VOTAG,

CIT, LEP, ILL) in Jurisdiction j and LMG g

N̂V
jg, N̂

C
jg, N̂

L
jg, N̂

I
jg The ACS survey-weighted estimates of total persons (respectively

VOTAG, CIT, LEP, ILL) in Jurisdiction j and LMG g

nVag, n
C
ag, n

L
ag, n

I
ag The numbers of ACS persons (respectively VOTAG, CIT, LEP,

ILL) sampled in AIA a, and LMG g

N̂V
ag, N̂

C
ag, N̂

L
ag, N̂

I
ag The ACS survey-weighted estimates of total persons

(respectively VOTAG,CIT, LEP, ILL) in AIA a and LMG g

N̂C
j+ The ACS survey-weighted estimate of total number of CIT

persons (LMG and non-LMG) in Jurisdiction j

N̂C
a+ The ACS survey-weighted estimate of total number of CIT

AIAN persons (LMG and non-LMG) in AIA a

NA
jg, N

A
ag The true totals of persons with characteristic A=V,C,L,I in

Jurisdiction j or in AIA a within LMG g

NC
j+, N

C
a+ The ACS survey-weighted estimate of total number of CIT

persons or AIAN persons, both LMG and non-LMG, in
Jurisdiction j or AIA a

From this point on, we no longer elaborate notations for AIA areas, simply noting that all models
for Jurisdictions j within LMG g have counterparts for AIAs a within AIAN LMGs g.

Table 14: Observable quantities figuring in the Dirchlet-multinomial models.

Notation Interpretation

X
C(g)
j , X

L(g)
j Vectors of covariates from those described in Sec. 3.1

respectively used to model CIT rate within VOTAG and LEP
rate within CIT for LMG g.

Y A
jg = nVjg N̂

A
jg/N̂

V
jg Ratio-estimator-scaled sample sizes, the observations modeled in

the Dirichlet-multinomial model, for A = C,L, I

43



Table 15: Statistical parameters and intermediate modeled quantities within the Dirichlet-
multinomial model.

Notation Interpretation

µjg, νjg, Rates of CIT within VOTAG, LEP within CIT, for Jurisdiction j
in LMG g

ρg Rate of illiteracy within LEP, assumed not to vary by j within
LMG g

βg, γg Regression coefficients applying respectively to X
C(g)
j and X

L(g)
j

in models within LMG g for µjg and νjg

τog Dispersion-factor parameter for Dirichlet multinomial model for
scaled sample proportions Y A

jg within LMG g

τjg = τog (nVjg)1/2 The dispersion in Dirichlet multinomial model for scaled sample
proportions Y A

jg within LMG g

πAjg, A = C, L, I The proportions NA
jg/N

V
jg of true voting-age population in nested

categories A = C,L, I, modeled as unobserved random effects
within Jurisdiction j, LMG g

ωjg = {ωk,jg}4k=1 The modeled random-effect vector
(1− πCjg, πCjg − πLjg, πLjg − πIjg, πIjg) of proportions in disjoint
categories in Jurisdiction j, LMG g

The Dirichlet-multinomial model can now be summarized using these notations as:(
nVjg − Y C

jg , Y
L
jg − Y L

jg, Y
L
jg − Y I

jg, Y
I
jg

)
∼ Multinomial(nVjg, ωjg)

ωjg ∼ Dirichlet
(
τjg, (1− µjg, µjg(1− νjg), µjgνjg(1− ρg), µjgνjgρg)

)
τjg = τog

√
nVjg , (1− µjg) + µjg(1− νjg) + µjgνjg(1− ρg) + µjgνjgρg = 1

µjg =
exp(β′g XC(g))

1 + exp(β′g XC(g))
, νjg =

exp(γ′g XL(g))

1 + exp(γ′g XL(g))
.
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Table 16: Dirichlet-multinomial estimated parameters and model-based predictors.

Notation Interpretation

β̂g, γ̂g, τ̂og , ρ̂g MLEs of model parameters from data {Y A
jg , A = C,L, I, j ∈ J }

µ̂jg, ν̂jg Domain-specific rate predictors for πAjg, obtained from the

formulas for µjg, νjg by substituting MLEs β̂g, γ̂g for βg, γg

ω̂jg = {ω̂k,jg}4k=1 Predictors of random-effect vector ωjg for Jurisdiction j, LMG g

π̂Ajg , A = C, L, I Model-based predictors of nested random effects πAjg for
Jurisdiction j, LMG g
π̂Cjg = µ̂jg, π̂

L
jg = µ̂jgν̂jg, π̂

I
jg = µ̂jgν̂jgρ̂g

(ÑA
jg, A = C,L, I) Model-based predictors of true population counts NA

jg for
Jurisdiction j, LMG g
ÑA

jg = nAjg + {N̂V
jg − nVjg} π̂Ajg, A = C,L, I

(ÑA
jg,alt, A = C,L, I) Alternative predictors of true population counts NA

jg for
Jurisdiction j, LMG g
ÑA

jg,alt = Y A
jg + {N̂V

jg − nVjg} π̂Ajg, A = C,L, I
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Table 17: Notations related to the replication (BRR or SDR) and parametric bootstrap steps in
hybrid variance estimation. The notations are defined below with respect to LMG indices g, but
in Appendix F the g sub-indices are suppressed for simplicity.

N̂
V (r)
jg Version of estimates N̂V

jg calculated with r’th set of replicate
SDR weights

π
A(r)
jg Version of πAjg recalculated from Dirichlet-multinomial model

with (β̂g, γ̂g, τ̂og , µ̂jg, ν̂jg, ρ̂g) replacing (βj , γg, τog , ρg, µjg, νjg)

β̂
(r)
g , γ̂

(r)
g , τ̂

(r)
og , ρ̂

(r)
g , µ̂

(r)
jg , ν̂

(r)
jg ML parameter estimates calculated from data nVj · π

A(r)
jg

replacing Y A
jg in Dirichlet-multinomial model

{ω∗(b,r)jg,k }
4
k=1, π

∗A(b,r)
jg Version of ωj,k and πAj simulated in the b’th bootstrap iteration

for the r’th replicate weight according to Dirichlet-multinomial

model with parameters β̂
(r)
g , γ̂

(r)
g τ̂

(r)
jg , ρ̂

(r)
g , µ̂

(r)
jg , ν̂

(r)
jg

Y
∗A(b,r)
jg , A = C,L, I Bootstrap-simulated version of scaled sample sizes for use with

r’th rep-weights, with

(1− Y ∗C(b,r)
jg , Y

∗C(b,r)
jg − Y ∗L(b,r)jg , Y

∗L(b,r)
jg − Y ∗I(b,r)jg , Y

∗I(b,r)
jg )

generated as Multinomial(nVjg, ω
∗(b,r)
jg )

β̂
∗(b,r)
g , γ̂

∗(b,r)
g , τ̂

∗(b,r)
og , ρ̂

∗(b,r)
g ML parameter estimates derived from the Dirichlet-multinomial

model with data {Y ∗A(b,r)
jg , A = C,L, I}

Ñ
∗A(b,r)
jg,alt Bootstrap-based predictors of true population counts NA

jg for
Jurisdiction j, LMG g

(Ñ
∗A(b,r)
jg,alt = Y

∗A(b,r)
jg + {N̂V (r)

jg − nVjg} π̂
∗A(b,r)
jg , A = C,L, I)

ẽ
∗A(b,r)
jg Ñ

∗A(b,r)
jg,alt − N̂

V (r)
jg π

∗A(b,r)
jg bootstrap prediction errors

BiasAjg Replicate-weighted and bootstrapped bias term estimated from

{e∗A(b,r)
jg }b,r

WithinAjg Replicate-weighted average of within-bootstrap variances

e
∗IR(b,r)
jg Bootstrap-within-replicate prediction error for ratio estimator of

ILLIT rate within LEP in Jurisdiction j, LMG g,

e
∗IR(b,r)
jg = Ñ

∗I(b,r)
jg,alt /Ñ

∗L(b,r)
jg,alt − π

∗I(b,r)
jg /π

∗L(b,r)
jg
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F Model Estimation Details

As was discussed earlier, LMGs vary greatly in their number of observations (i.e., of areas in the
LMG with at least a minimum sample size), and also in the quality of predictions from covariates
within LMG of the domain-level CIT and LEP proportions. As a result, no single model works well
for every LMG. We attempted to fit generally similar models to all LMGs while maintaining some
differences among LMGs due to the number of observations and to the covariates that turned out
to be predictive of domain CIT and LEP proportions within the LMG. In LMGs with no sampled
non-citizens and no sampled ILL persons nationally, we fit reduced models with the assumption
that the corresponding model parameters µ and ρ were equal to 1 and 0 respectively.

The numerical thresholds determined for the “Model Convergence Criteria” in the final form of
the models implemented on 2014 data, were the result of extensive testing on 2012 data. We found
that models exhibiting minimum eigenvalues of the log-likelihood Hessian matrix less than 10−4

or maximum fitted coefficient as large as 12 or maximum estimated standard error of 6 or more
were exhibiting questionable convergence, and we excluded those model fits from consideration.
In the algorithm described below, that resulted either in re-fitting the model with fewer predictor
variables or (in case the model with no predictors was already being considered) in excluding
modeling for that domain (LMG, geography) , where “geography” refers either to Jurisdiction or
to AIA. The failure of convergence criteria in this sense tended to occur only for LMGs with very few
observations, i.e. few geographic units with at least a specified minimum number of sampled voting-
age LMG persons. However, some of the excluded cases did in fact have convergent but anomalous
models, associated with small Fisher information and very poorly estimated parameters, and we
thought it quite proper to exclude them on that account. The minimum-observation criteria and
model-convergence criteria summarized below were in a sense ad hoc business rules, but represented
our best experience from 2012 data in distinguishing useful from ill-fitted models, and worked
equally well for models based on Jurisdictions as for those based on AIAs.

F.1 Jurisdiction Model Algorithm

For Jurisdiction models, we first divided the LMGs into three broader racial groups: Asian LMGs,
AIAN LMGs, and the Hispanic LMG. Next, within these three general groups of LMGs, we devel-
oped three levels of the model with varying number of covariates. For each class, we created a full,
medium, and no-covariate model level. For each LMG, we attempted to fit the model starting with
the full option. Based on specified fit metrics and a minimum observation criterion, we accepted
or rejected the fit of the full model. If we rejected the fit, we continued the model fitting process
and attempted the medium model. Again, we accepted or rejected the fit of the model based on
fit metric and minimum observation criteria. If we rejected the model fit of the medium model, we
repeated the process using the no-covariate model. For a given LMG, if the fit of this final level of
model was rejected, then we determined that no small area model was possible and used the direct
survey-weighted estimates in the estimation of the quantities used in the coverage determinations.
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Minimum Observation Criteria:

• Full model: At least 50 observations (areas) with ≥ 5 voting-age LMG persons

• Medium model: At least 50 observations (areas) with ≥ 3 voting-age LMG persons

• No-covariate model: At least 25 observations (areas) with ≥ 1 voting-age LMG persons

Model Convergence Criteria:

• The optimization function used to compute the MLE returned a “converged” code

• The minimum eigenvalue of the Hessian matrix > 1.e− 4

• The absolute value of all model parameters is ≤ 11.5

• The estimated standard error of all model parameters is ≤ 6

Jurisdiction Level Models:

Asian LMGs

• Full Model :

– Citizenship Predictors: (C13, C14)

– LEP Predictors: (C13, C15, C2)

– Observations used to fit model: Jurisdictions with ≥ 5 voting-age LMG persons

• Medium Model :

– Citizenship Predictors: (C13)

– LEP Predictors: (C15)

– Observations used to fit model: Jurisdictions with ≥ 3 voting-age LMG persons

• No-covariate Model :

– Citizenship Predictors: none

– LEP Predictors: none

– Observations used to fit model: Jurisdictions with ≥ 1 voting-age LMG persons

AIAN LMGs

• Full Model :

– Citizenship Predictors: (C13, C14)

– LEP Predictors: (C6, C15)
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– Observations used to fit model: Jurisdictions with ≥ 5 voting-age LMG persons

• Medium Model :

– Citizenship Predictors: (C13)

– LEP Predictors: (C15)

– Observations used to fit model: Jurisdictions with ≥ 3 voting-age LMG persons

• No-covariate Model :

– Citizenship Predictors: none

– LEP Predictors: none

– Observations used to fit model: Jurisdictions with ≥ 1 voting-age LMG persons

Hispanic LMG

• Full Model :

– Citizenship Predictors: (C13, C14)

– LEP Predictors: (C3, C5, C13, C15, C1, C2)

– Observations used to fit model: Jurisdictions with ≥ 5 voting-age LMG persons

The following are the final Jurisdiction models used for each of the corresponding LMGs after
applying the Jurisdiction model algorithm.

Full Model LMGs:
Asian Indian, Bangladeshi, Cambodian, Chinese, Filipino, Hmong, Indonesian, Japanese, Ko-
rean, Laotian, Malaysian, Pakistani, Sri Lankan, Thai, Vietnamese, Other Asian, Apache, Black-
feet, Cherokee, Chippewa, Choctaw, Creek, Iroquois, Lumbee, Mexican American Indian, Navajo,
Pueblo, Sioux, South American Indian, All other AI tribes, AI tribes not specified, Tlingit-Haida,
AI or AN tribes not specified, Hispanic.

Medium Model LMGs:
Canadian and French Indian, Central American Indian, Chickasaw, Comanche, Cree, Crow, Delaware,
Hopi, Menominee, Osage, Ottawa, Paiute, Potawatomi, Seminole, Shoshone, Spanish American In-
dian, Yaqui, Alaska Athabascan, Inupiat, Alaskan Native Tribes not specified

No-covariate Model LMGs:
Arapaho, Colville, Houma, Pima, Puget Sound Salish, Tohono O’Odham, Yakama, Yuman, Aleut,
Tsimshian, Yup’ik

No Model (Direct Estimate) LMGs:
Cheyenne, Kiowa, Ute
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F.2 AIA Model Algorithm

For AIAN AIA models, we used a similar but simplified approach to the Jurisdiction model algo-
rithm. For each AIAN LMG, we started with a medium model that included two covariates, and
attempted to fit that model. If the model met certain fit and observation criteria, it was accepted.
If not, we attempted to fit a no-covariate model using similar criteria. If neither model level met
the criteria for a given LMG, we determined that no small area model was possible and used the
direct survey-weighted estimates in the estimation of the determination criteria.

Minimum Observation Criteria:

• Medium Model : At least 80 observations (areas) with ≥ 1 voting-age LMG persons

• No-covariate Model : At least 25 observations (areas) with ≥ 1 voting-age LMG persons

Model Convergence Criteria:

• The optimization function used to compute the MLE returned a “converged” code

• The minimum eigenvalue of the Hessian matrix > 1.e− 4

• The absolute value of all parameters is ≤ 11.5

• The estimated standard error of all model parameters is ≤ 6

Jurisdiction Model Levels:

• Medium Model :

– Citizenship Predictors: (C6)

– LEP Predictors: (C4)

– Observations used to fit model: Jurisdictions with ≥ 1 voting-age LMG persons

• No-covariate Model :

– Citizenship Predictors: none

– LEP Predictors: none

– Observations used to fit model: Jurisdictions with ≥ 1 voting-age LMG persons

The following are the final AIA models used for each of the corresponding LMGs after applying
the AIA model algorithm.

Medium Model LMGs:
All other AI tribes, AI tribes not specified, Aleut, Inupiat, AI or AN tribes not specified
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No-covariate Model LMGs:
Apache, Canadian and French Indian Cherokee, Chippewa, Choctaw, Cree, Delaware, Hopi, Iro-
quois, Kiowa, Mexican American Indian, Navajo, Paiute, Pima, Potawatomi, Pueblo, Puget Sound
Salish, Seminole, Shoshone, Sioux, South American Indian, Ute, Yuman, Alaska Athabascan,
Tlingit-Haida, Yup’ik, Alaskan Native Tribes not specified

No Model (Direct Estimate) LMGs:
Arapaho, Blackfeet, Central American Indian, Cheyenne, Chickasaw, Colville, Comanche, Creek,
Crow, Houma, Lumbee, Menominee, Osage, Ottawa, Spanish American Indian, Tohono O’Odham,
Yakama, Yaqui, Tsimshian
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G Hybrid BRR-Bootstrap MSPE Estimation Methodology, Tech-
nical Details

First, we define a few additional notations for convenience. Letting the superscript A = C,L, or I
refer generically to one of the CIT, LEP, or ILL levels, recall the notation

NA
jg , N̂A

jg , ÑA
jg , nAjg for A ∈ {C,L, I}.

Define the scaled sampled counts as

Y A
jg = nVjg

N̂A
jg

N̂V
jg

for A ∈ {C,L, I}.

Then define random effect parameters and estimators that are aligned with CIT, LEP, ILL:

πCjg = 1− ωjg,1 , πLjg = ωjg,3 + ωjg,4 , πIjg = ωjg,4

π̂Cjg = 1− ω̂jg,1 , π̂Ljg = ω̂jg,3 + ω̂jg,4 , π̂Ijg = ω̂jg,4,

and refer to these as πAjg or π̂Ajg for A ∈ {C,L, I}.
To simplify notation we drop the LMG subscript g from all mathematical notation and assume

that the LMG is fixed throughout. In our framework NV
j refers to the (unobserved) voting-age

population in LMG g in Jurisdiction j, and is treated as a nonrandom quantity. Populations
NA

j for A = C,L, I are the true but unobserved voting-age population in (j, g) respectively CIT,
LEP, and ILL, and these populations are treated as unobserved random variables. Equivalently,
the random-effect proportions NA

j /N
V
j ≡ πAj are converted to probabilities of disjoint categories,

creating the probability-vector of mixed-effect parameters ωj = (ω1j , ω2j , ω3j , ω4j) modeled in
terms of predictors in (7) and appearing as underlying category probabilities in (6). The assignment
of the NV

j persons into nested categories C,L, I is viewed as being the result of multinomial
randomization at the person level (as in the ‘pseudo-randomization’ model of Oh and Scheuren
[1983]) superimposed onto the fixed finite population NV

j . The variables NV
j are viewed nonrandom,

while NA
j /N

V
j are random. Similarly, the sample sizes nVj are treated as nonrandom1, while the

partition of the sample into C,L, I individuals, along with all of the survey-weighted population
estimators N̂V

j , N̂
A
j , are treated as random.

The form of the predictions of the CIT, LEP, and ILL totals is given in equation (11) by
ÑA

j = nAj + (N̂V
j − nVj ) π̂Aj . The idea behind the hybrid BRR and Bootstrap variance method is

to estimate the variability of predictors ÑA
j in terms of levels of error from N̂V

j in estimating NV
j

and from π̂Aj in predicting πAj for A = {C,L, I}. The estimates ÑA
j aim to predict NA

j = NV
j · πAj ,

1This is somewhat artificial, since the ACS is certainly not stratified on Jurisdiction within LMG. However, the
BRR idea applied in obtaining SDR variances effectively treats the sample sizes nV

j as fixed and describes the sampling
variability only through varying the weights of the fixed set of sampled individuals within (j, g).
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which according to our model contains πAj as a random domain effect. The overall measure of
prediction error to be estimated is the Mean Squared Prediction Error

MSPE(ÑA
j ) = E(ÑA

j − NV
j πAj )2. (12)

The expectation is defined both over the ACS sampling design and the model, conditionally
given nVj and the covariates. This MSPE is decomposed as in Analysis of Variance, based on the

idea of estimating the separate errors at the NV
j and πAj levels.

The MSPE (12) is actually estimated in a modified form replacing ÑA
j = nAj + (N̂V

j −nVj ) π̂Aj
with ÑA

j,alt = Y A
j + (N̂V

j − nVj ) π̂Aj , that is, replacing the sampled counts nAj in the prediction

formula with the survey-weighted, scaled counts Y A
j . This is done because we do not have a design-

based variance calculation for nAj , nor do we model the joint distribution of nAj and Y A
j . For larger

Jurisdictions, MSPE(ÑA
j,alt) will provide a close approximation of MSPE(ÑA

j ) because nAj and Y A
j

will be very similar, while for smaller Jurisdictions the replacement of ÑA
j by ÑA

j,alt represents an
alternative choice of predictor but not the only reasonable choice.

A key assumption underlying the development of our hybrid variance estimation theory is that
sample survey estimates of the LMG voting-age totals for a Jurisdiction or AIA are independent
of the scaled sample sizes Y A

j and the random effects πAj .

Assumption: N̂V
j and

(
(Y C

j , Y
L
j , Y

I
j ), (πCj , π

L
j , π

I
j )
)

are independent for all j. (13)

This assumption requires some discussion. First, the estimator N̂V
j of the unknown constant pop-

ulation size NV
j is defined purely through the ACS random sample of size nVj , using survey weights

that we also treat as fixed, despite the fact that they are developed in multiple stages of nonre-
sponse adjustment. The random proportions πAj and associated domain sample sizes nAj and ratios

NA
j /N

V
j are regarded as the result of a population-level random assignment of (voting-age) persons

and their associated weights to nested categories C,L, I, resulting in estimators N̂A
j /N̂

V
j . In that

sense the independence of sampling from category-assignment makes plausible the independence of
N̂V

j from {nAj , NA
j /N

V
j }. The approximate independence of N̂V

j from N̂A
j /N̂

V
j is less clear, since

the latter does involve the randomness of sampling with respect to the rather complicated system of
individual weights; however even if the set of weights of the nVj sampled individuals were fixed (and

N̂V
j is defined as their sum), the ratio-estimator N̂A

j /N̂
V
j involves the proportion of that weight-

sum assigned to individuals in category A, and in that sense seems much more associated with the
random category-assignment than with the overall sum of nVj sampled weights. So far, the only

provable assertion related to this assumption is that if the NV
j population members (including those

nVj that are sampled) each have random probability vector {ωj}4j=1 of falling into the categories

V OTAG ∩ CIT c, CIT ∩ LEP c, LEP ∩ ILLIT c, and ILLIT , then cov(Y A
j , N̂

V
j ) = 0.

Further developments are based on the decomposition

ÑA
j,alt − N̂V

j πAj =
{
Y A
j − nVj π̂Aj + NV

j (π̂Aj − πAj )
}

+ (N̂V
j −NV

j )(π̂Aj − πAj ) (14)
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Under Assumption (13) and the unbiasedness of N̂V
j for NV

j ,

E
(
ÑA

j,alt − N̂V
j πAj

)2
= E

(
Y A
j − nVj π̂Aj + NV

j (π̂Aj − πAj )
)2

+ Var(N̂V
j )E((πAj − π̂Aj )2), (15)

and similarly

E
(
ÑA

j,alt − NV
j πAj

)2
= E

(
Y A
j − nVj π̂Aj +NV

j (π̂Aj − πAj )
)2

+ Var(N̂V
j )E((π̂Aj )2). (16)

Then taking the difference between equations (16) and (15), we get

MSPE(ÑA
j,alt) = E

(
ÑA

j,alt − NV
j πAj

)2
= E

(
Y A
j − nVj π̂Aj +NV

j (π̂Aj − πAj )
)2

+ Var(N̂V
j )E((π̂Aj )2) (17)

= E
(
ÑA

j,alt − N̂V
j πAj

)2
−Var(N̂V

j )E((πAj − π̂Aj )2) + Var(N̂V
j )E((π̂Aj )2) (18)

= E
(
ÑA

j,alt − N̂V
j πAj

)2
+ Var(N̂V

j )E
(

(π̂Aj )2 − (πAj − π̂Aj )2
)
. (19)

The method of drawing parametric bootstrap samples begins with first estimating the maximum
likelihood estimated parameters θ̂(r) for each of r = 0, 1, . . . , R sets of unit-level replicate weights,
where R ≤ 80 and r = 0 denotes the set of final weights (those used for point estimation). Each set

of weights r corresponds to a set of estimates (Y
C(r)
j , Y

L(r)
j , Y

I(r)
j ), N̂

V (r)
j generated by using the

r-replicate weights for the same set of nVj sampled voting-age individuals in the j’th Jurisdiction.2

Then, for each r and the maximum likelihood estimated parameters θ̂(r), B independent sets of

variables (ω
∗(b,r)
j , (Y

A∗(b,r)
j , A = C,L, I)) are generated, according to the models

ω
∗(b,r)
j ∼ Dirichlet

(
τ̂
(r)
j , (1− µ̂(r)j ), µ̂

(r)
j (1− ν̂(r)j ), µ̂

(r)
j ν̂

(r)
j (1− ρ̂(r)), µ̂(r)j ν̂

(r)
j ρ̂(r)

)
and

(nVj − Y
∗C(b,r)
j , Y

∗C(b,r)
j − Y ∗L(b,r)j , Y

∗L(b,r)
j − Y ∗I(b,r)j , Y

∗I(b,r)
j ) ∼ Multinom(nVj , ω

∗(b,r)
j ).

From these bootstrapped quantities, new maximum-likelihood bootstrap parameter estimates are

made from the data (XC
j ,X

L
j , Y

∗A(b,r)
j , A = C,L, I, ), and are denoted θ̂

∗(b,r)
j . These lead to

bootstrapped estimates ω̂
∗(b,r)
j,k , k = 1, . . . , 4, from a formula like (10), and to predictions

2A few of the unit replicate weights generated by SDR in ACS turn out to be negative, and some of the generated
‘estimates’ N̂

V (r)
j in small Jurisdictions for some LMGs are either 0 or less than the fixed sample sizes nV

j . When

N̂
V (r)
j ≤ 0, the values nV

j , Y
∗A(b,r)
j are set to 0; when 0 < N̂

V (r)
j < nV

j , the value nV
j is left alone but N̂

V (r)
j is

replaced by nV
j . Thus, the values nV

j that we have treated notationally as constant over all weight and bootstrap

replicates, do depend on r through being forced to 0 when N̂
V (r)
j ≤ 0.
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
Ñ
∗C(b,r)
j,alt

Ñ
∗L(b,r)
j,alt

Ñ
∗I(b,r)
j,alt

 =


Y
∗C(b,r)
j

Y
∗L(b,r)
j

Y
∗I(b,r)
j

 + (N̂
V (r)
j − nVj )


1− ω̂∗(b,r)j,1

ω̂
∗(b,r)
j,3 + ω̂

∗(b,r)
j,4

ω̂
∗(b,r)
j,4

 . (20)

The computing formulas for (19) are defined as follows. Denote
(
π
∗C(b,r)
j , π

∗L(b,r)
j , π

∗I(b,r)
j

)
=(

1− ω∗(b,r)j,1 , ω
∗(b,r)
j,3 + ω

∗(b,r)
j,4 , ω

∗(b,r)
j,4

)
, and analogously for the estimated versions π̂

∗A(b,r)
j . Define the

bootstrapped prediction errors

e
∗A(b,r)
j = Ñ

∗A(b,r)
j,alt − N̂

V (r)
j π

∗A(b,r)
j , for A = C,L, I. (21)

First, to estimate the mean of ÑA
j,alt − N̂V

j πAj , we define a replicate-weighted and bootstrapped
bias term by

BiasAj =
1

(R+ 1)

R∑
r=0

1

B

B∑
b=1

e
∗A(b,r)
j , for A = C,L, I. (22)

Next we develop an estimator of ‘within’ variance (expected conditional variance given N̂V
j ) for

ÑA
j,alt − N̂V

j π
A
j , equal to

E
(
ÑA

j,alt − N̂V
j π

A
j − E(ÑA

j,alt − N̂V
j π

A
j | N̂V

j )
)2
.

This estimator, the ‘within’ terms of the MSPE estimate, is given by the replicate-weighted average
of the bootstrap variances,

WithinAj =
1

R+ 1

R∑
r=0

var({e∗A(b,r)
j }Bb=1) , for A = C,L, I (23)

where var(w) denotes the sample variance of the entries of the finite-dimensional vector w. The
third term contributing to the MSPE estimate has as its target

E
(
E(ÑA

j,alt − N̂V
j π

A
j

∣∣∣ N̂V
j ) − E(ÑA

j − N̂A
j π

A
j )
)2
.

To derive the estimator, we view E(ÑA
j,alt | N̂V

j ) as a nonlinear function of N̂V
j into which we can

plug replicate-weighted estimates N̂
(r)
j . The expression inside the square term in the last displayed

equation is estimated by bootstrap averages, while the outer expected square is a variance estimated
via the SDR formula, providing the ‘between’ terms of the MSPE estimates,

BetweenAj =
4

R

R∑
r=1

(e
∗A(+,r)
j − e∗A(+,0)

j )2 , for A = {C,L, I} (24)
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where

e
∗A(+,r)
j ≡ 1

B

B∑
b=1

e
∗A(b,r)
j .

Finally, the quantity Var(N̂V
j )E

(
(π̂Aj )2− (πAj − π̂Aj )2

)
in equation (19) is estimated via replication

in the term

V̂ar(N̂V
j ) =

4

R

80∑
r=1

(
N̂

V (r)
j − N̂V

j

)2
(25)

and via replicate and bootstrap averaging in the term

DiffSqAj =
1

BR

R∑
r=1

B∑
b=1

(
(π̂
∗A(b,r)
j )2 − (π

∗A(b,r)
j − π̂∗A(b,r)

j )2
)
. (26)

Putting equations (22) – (26) together gives us the estimate of (19).

M̂SPE(ÑA
j,alt) = (BiasAj )2 + WithinAj + BetweenAj + V̂ar(N̂V

j ) · DiffSqAj . (27)

To reduce computation time, in the case of some LMGs, we calculated these terms using a
smaller number K < 80 of the replicate weight sets. Denote these indices by r1, . . . , rK ∈ {1, . . . , 80}
and assume they are sampled randomly (equiprobably, without replacement). When this is done,
formulas (22) and (23) change only by replacing the average (R + 1)−1

∑R
r=0 by (K + 1)−1

∑K
k=0

and all of the r indices by rk. However, formula (24) changes further if replicate-weight columns
are sampled in this way. To see how, note that

4

R

R∑
r=1

(
e
∗A(+,r)
j − e∗A(+,0)

j

)2
=

4

R

R∑
r=1

(
e
∗A(+,r)
j − ē∗Aj

)2
+ 4

(
ē∗Aj − e

∗A(+,0)
j

)2
where ē∗Aj = R−1

∑R
r=1 e

∗A(+,r)
j , and the right-hand side of the last expression

= 4
R− 1

R
var({e∗A(+,r)

j }r) + 4 (ē∗Aj − e
∗A(+,0)
j )2. (28)

By simple random sampling variance formulas, it is easy to check that (28) is equal to the expec-
tation over samples {r1, . . . , rK} of

4
R− 1

R
var({e∗A(+,rk)

j }Kk=1) + 4
( 1

K

K∑
k=1

e
∗A(+,rk)
j − e

∗A(+,0)
j

)2
− 4R(R−K)

R2K
var({e∗A(+,rk)

j }Kk=1)

= 4
K − 1

K
var({e∗A(+,rk)

j }Kk=1) + 4
( 1

K

K∑
k=1

e
∗A(+,rk)
j − e

∗A(+,0)
j

)2
. (29)
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This last expression, for A = C,L, I, replaces formula (24) when K < R replicate-weight columns
are sampled equiprobably without replacement.

So far, we have only discussed the estimated MSPE for estimated totals (ÑC
j,alt, Ñ

L
j,alt, Ñ

I
j,alt),

but we also need to estimate the MSPE for the LEP and ILL proportions respectively. We estimate

MSPE(ÑL
j,alt/N̂

C
j+) by the approximation MSPE(ÑL

j,alt)
/

(N̂C
j+)2 . Therefore our estimate is

M̂SPE
(
ÑL

j,alt

/
N̂C

j+

)
= M̂SPE(ÑL

j,alt)
/

(N̂C
j+)2. (30)

The denominator of the LEP proportion estimate in (30) is the count of all citizens in a Jurisdic-
tion, and it is generally estimated much more accurately than the LEP count within the LMG. A
refinement of the approximate formula could be calculated by linearizing the ratio estimator, but
because the term contributed by the variance of the denominator is generally so much smaller the
term from (27) with A = L, we have not found it worthwhile to do so.

Next, to estimate MSPE(Ñ I
j,alt

/
ÑL

j,alt) we first note that

MSPE(Ñ I
j,alt

/
ÑL

j,alt) = E
(Ñ I

j,alt

ÑL
j,alt

−
NV

j π
I
j

NV
j π

L
j

)2
= E

(Ñ I
j,alt

ÑL
j,alt

−
πIj

πLj

)2
, (31)

so that NV
j cancels in the numerator and denominator of the second term. We can then create an

estimate from the bootstrap replicates in a similar way to (27). Define a prediction error equation
analogous to Equation (21)

e
∗IR(b,r)
j =

Ñ
∗I(b,r)
j,alt

Ñ
∗L(b,r)
j,alt

−
π
∗I(b,r)
j

π
∗L(b,r)
j

. (32)

Using e
∗IR(b,r)
j in place of e

∗A(b,r)
j , calculate the analogous Bias, Within, and Between terms in

equations (22)–(24) and denote them BiasIRj , WithinIRj , and BetweenIRj . The MSPE estimate
becomes

M̂SPE(Ñ I
j,alt

/
ÑL

j,alt) = (BiasIRj )2 + WithinIRj + BetweenIRj . (33)

In equation (31) both numerator and denominator are highly variable, and therefore the lin-
earizatition of the ratio would not give an accurate approximation and is not needed because the
factor NV

j cancels out from numerator and denominator of the target Illiteracy rate. However, we
do use a linearized form to estimate the MSPE of the illiteracy proportion for calculating MSPEs
of aggregated (State or National) totals, because the terms NV

j do not cancel out of the target
aggregated illiteracy rate estimators.
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Lastly, we exhibit the formulas for estimating the MSPEs of state and national predictions,
which are based on aggregations of Jurisdiction-level predictions. Let the set S denote the Jurisdic-

tions in a particular aggregation, such as a state. Then one goal is to estimate MSPE
(∑

j∈S Ñ
A
j,alt

)
.

Moving next to the estimation of MSPEs of state-level ratios, define

θ̃IRS =

∑
j∈S Ñ

I
j,alt∑

j∈S Ñ
L
j,alt

. (34)

Then

MSPE(θ̃IRS ) = E

(
θ̃IRS −

∑
j∈S N

V
j π

I
j∑

j∈S N
V
j π

L
j

)2

= E

∑
j∈S

(
θ̃IRS N

V
j π

L
j −NV

j π
I
j

)
/
∑
j∈S

NV
j π

L
j

2

= E

∑
j∈S

{
Ñ I

j,alt − θ̃IRS ÑL
j,alt

}
−
∑
j∈S

NV
j (πIj − θ̃IRS πLj )

 /
∑
j∈S

NV
j π

L
j

2

.

By linearization of the ratio estimator, this can be approximated by

≈ E

∑
j∈S

({
Ñ I

j,alt − θ̃IRS ÑL
j,alt

}
−NV

j (πIj − θ̃IRS πLj )
)2

/

∑
j∈S

NV
j π

L
j

2

= E

∑
j∈S

Ñ IR
j,alt − πIRj NV

j

2

/

∑
j∈S

NV
j π

L
j

2

= MSPE

∑
j∈S

Ñ IR
j,alt

 /

∑
j∈S

NV
j π

L
j

2

, (35)

where
Ñ IR

j,alt = Ñ I
j,alt − θ̃IRS ÑL

j,alt , πIRj = πIj − θ̃IRS πLj .

Therefore we also need to estimate MSPE
(∑

j∈S Ñ
IR
j,alt

)
. In general, for A = C,L, I, IR, we find
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as in deriving (19) that

MSPE

∑
j∈S

ÑA
j,alt

 = E

∑
j∈S

(
ÑA

j,alt −NV
j π

A
j

)2

= E

∑
j∈S

(
ÑA

j,alt − N̂V
j π

A
j

)2

+ E

∑
j∈S

(
N̂V

j −NV
j

)
π̂Aj

2

− E

∑
j∈S

(
N̂V

j −NV
j

) (
π̂Aj − πAj

)2

. (36)

To estimate MSPE
(∑

j∈S Ñ
A
j,alt

)
, we define prediction-error variables ε

∗A(b,rk)
S analogous to the

Jurisdiction-level prediction errors (21) by

ε
∗A(b,rk)
S =

∑
j∈S

e
∗A(b,rk)
j =

∑
j∈S

Ñ
∗A(b,rk)
j,alt − N̂V (rk)

j π
∗A(b,rk)
j , for A = {C,L, I, IR}, (37)

where b = 1, . . . , B indexes the B bootstrap iterations and we sample K ≤ 80 of the replicate
weight sets and denote the indices by r1, . . . , rK ∈ {1, . . . , 80}.

The first term of MSPE
(∑

j∈S Ñ
A
j,alt

)
, E
(∑

j∈S

(
ÑA

j,alt − N̂V
j π

A
j

))2
, can be decomposed as in

(27) into Bias, Within, and Between terms estimated by

BiasAS =
1

B(K + 1)

K∑
k=0

B∑
b=1

ε
∗A(b,rk)
S (38)

WithinAS =
1

K + 1

K∑
k=0

var

({
ε
∗A(b,rk)
S

}B

b=1

)
(39)

BetweenAS =
4(K − 1)

K
var

(
ε
∗A(+,rk)
S

)
+ 4

(
1

KB

K∑
k=1

B∑
b=1

(
ε
∗A(b,rk)
S − ε∗A(b,0)

S

))2

. (40)

The formula for BetweenAS has two terms, as in (27), because of the sampling of K replicate weight
sets. The final two terms of (36) can be estimated by bootstrap equivalents.

Term1AS =
4

KB

K∑
k=1

B∑
b=1

∑
j∈S

π̂
∗A(b,r)
j (N̂

V (r)
j − N̂V

j )

2

. (41)
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Term2AS =
4

KB

K∑
k=1

B∑
b=1

∑
j∈S

(π̂
∗A(b,r)
j − π∗A(b,r)

j )(N̂
V (r)
j − N̂V

j )

2

. (42)

Finally, this leads to the estimator of MSPE
(∑

j∈S Ñ
A
j,alt

)
(36), which is given by

M̂SPE

∑
j∈S

ÑA
j,alt

 =
(
BiasAS

)2
+ WithinAS + BetweenAS + Term1AS + Term2AS . (43)

Using the approximation in equation (35), we estimate MSPE(θ̃IRS ) by

M̂SPE(θ̃IRS ) = M̂SPE

∑
j∈S

Ñ IR
j,alt

 /

∑
j∈S

N̂V
j π̂

L
j

2

. (44)

H Lack of Fit Diagnostic, Technical Details

For a given LMG g and a given set of areas (Jurisdictions or AIAs) indexed by i let θ̂i,MM and

θ̂i,DS denote the MM and DS estimates (5) of a parameter of interest θi. In our context, the most
important parameter of interest is the LEP proportion among voting-age citizens in LMG g and
area i, but the considerations of this Section apply equally well to the CIT or ILL proportions
among voting-age persons. Let A = {i : nVi > 0} denote the set of all areas i that have at least a
single sampled person in LMG g.

Using the assumed model and fitted model parameters, take B parametric bootstraps from
the model for each of the areas assuming a fixed voting-age sample size of ni. For each of the B
bootstraps re-estimate the model parameters along with the MM and DS estimates for each area.

Denote the MM and DS estimates for area i for bootstrap b as θ̂
(b)
i,MM and θ̂

(b)
i,DS respectively.

In order to compute the bootstrap lack of fit diagnostic, do the following:

[1] For the observed data and fitted model, compute:

ŜS =
∑
i∈A

((
θ̂i,MM − θ̂i,DS

)√
nVi

)2

. (45)

[2] Compute the empirical distribution for the parametric-bootstrap replicates:

ŜS
(b)

=
∑
i∈A

((
(θ̂

(b)
i,MM − θ̂

(b)
i,DS

)√
nVi

)2

(46)

for b = 1, . . . , B using the fitted model.
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[3] Compare the observed statistic ŜS to the reference distribution ŜS
(b)

by calculating the
bootstrap quantile

Q =
1

B

B∑
b=1

I
[ŜS≥ŜS

(b)
]
. (47)

Extreme values of Q near 0 (or 1), indicate that the amount of variation in the observed data
is respectively less than (greater than) the parametrically bootstrapped data and indicate a lack of
fit. See [Ashmead and Slud, 2017] for additional discussion and generalizations of this parametric
bootstrap lack of fit diagnostic.
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