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Abstract

We study the fitting of time series models via minimization of a multi-step ahead forecast er-

ror criterion that is based on the asymptotic average of squared forecast errors. Our objective

function uses frequency domain concepts, but is formulated in the time domain, and allows

estimation of all linear processes (e.g., ARIMA and component ARIMA). By using an asymp-

totic form of the forecast mean squared error, we obtain a well-defined nonlinear function of

the parameters that is provably minimized at the true parameter vector when the model is

correctly specified. We derive the statistical properties of the parameter estimates, and study

the asymptotic impact of model misspecification on multi-step ahead forecasting. The method

is illustrated through a forecasting exercise applied to several time series.
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1 Introduction

It is well-known that fitting models via the minimization of one-step ahead forecasting error is

equivalent to maximum likelihood estimation of the Gaussian likelihood for a stationary time series,

and thus provides efficient parameter estimation for correctly specified Gaussian time series models;

see Hannan and Deistler (1988), Dahlhaus and Wefelmeyer (1994), Taniguchi and Kakizawa (2000).

But in reality models are never correctly specified, and thus the maximum likelihood estimates

converge to so-called “pseudo-true” values under certain regularity conditions, and these pseudo-

true values minimize the Kullback-Leibler (KL) discrepancy between the specified model spectral

density and the true spectrum. This approach can be viewed as an attempt to minimize one-step
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ahead forecast error for a given process utilizing a certain misspecified model. Given that for some

applications more interest focuses on forecasting performance at high leads, it is natural to consider

the following questions: can we fit time series models such that multi-step ahead forecasting error

is minimized? Is there an objective function analogous to KL, which generalizes it to the multi-step

ahead case? What are the statistical properties of the resulting parameter estimates? This paper

provides answers to some of these questions.

We present a Generalized Kullback-Leibler (GKL) measure – which is really a multi-step ver-

sion of KL – and demonstrate that this measure can be directly derived from a multi-step ahead

forecasting error criterion. This GKL can be used with very little programming effort to fit lin-

ear time series models; in this paper we focus on the univariate ARIMA class1 of models. The

resulting parameter estimates are consistent for the pseudo-true values (i.e., the minimizers of the

GKL discrepancy between model and truth) under standard conditions, and are also asymptoti-

cally normal (consistency results under quite mild conditions are established in Findley, Pötscher,

and Wei (2004)). When the model is correctly specified, these estimates are inefficient, i.e., they

perform worse than the classical one-step ahead estimates; we discuss the reasons for this below.

However, since GKL is derived from a multi-step ahead forecasting error criterion, it is reasonable

to hope that forecasts generated from such a model – at that particular lead – will perform better

than the classical forecasts. This reflects an application-driven modeling philosophy: both model

specification and estimation should be oriented around a particular objective function associated

with the application. McElroy and Findley (2010) addresses the model specification problem from

a multi-step ahead forecasting perspective, and here we focus on the model estimation aspect.

The GKL can be used to investigate the behavior of multi-step pseudo-true values – the mini-

mizers of the discrepancy between truth and misspecified model – and is also the basis for actual

parameter estimates that generalize the (one-step ahead) quasi-maximum likelihood estimates asso-

ciated with the Whittle likelihood. We note in passing that Theorem 4.3.1 of Hannan and Deistler

(1988) provides a discussion of the equivalency of Gaussian likelihood and Whittle likelihood in the

case that the model is correctly specified; when the model is misspecified, the proper reference is

Dahlhaus and Wefelmeyer (1994).

Let us briefly discuss the econometric motivations for considering the multi-step ahead perspec-

tive. Since time series models in reality are always misspecified, the crucial thing is to find a model

that performs well according to the prescribed task of interest to the practitioner; using GKL as an

objective function means the practitioner is interested in a model that forecasts well at a particular

lead. In econometric business cycle analysis there is little interest in mere one-step ahead perfor-

mance of misspecified models, since the period of a typical cycle is 8 to 40 observations for quarterly

1Although for one-step ahead forecasting, the KL does not depend on unit root factors in the total autoregressive

polynomial, i.e., the differencing polynomial, in the multi-step ahead case this object participates directly in the GKL

function.
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data. A model or collection of models that can forecast well at lead h for 8 ≤ h ≤ 40 is needed here.

Another application is in the field of seasonal adjustment, and more generally the area of real-time

signal extraction. All model-based asymmetric signal extraction filters rely implicitly or explicitly

on long-horizon forecasts generated from the same misspecified model; see Dagum (1980), Findley

et al. (1998), Wildi (2004), and McElroy (2008a). Real-time – or concurrent – signal extraction is

discussed in Wildi (2004, 2008), where the nefarious impact of model misspecification on long-term

forecasting performance and signal extraction is highlighted through numerous empirical studies.

Beyond these obvious applications, any data analysis that is contingent on long-run forecasts – such

as occur in climatology (e.g., the hot topic of global warming) and demographics (e.g., forecasting

long-term changes in human population) – should not rely solely upon one-step ahead forecasting

model fitting criteria.

In light of these important motivations, there has been substantial prior work on this topic that

deserves mention. Cox (1961) describes how multi-step ahead forecast filters can be constructed

from exponentially weighted moving averages by fitting the smoothing parameter such that forecast

mean squared error is minimized when the underlying process is autoregressive. Tiao and Xu

(1993) later expanded this work, pointing out that the exponential weighted moving average is

the forecast filter that arises from multi-step forecasts from an ARIMA(0,1,1) model, where the

moving average parameter is the negative of the exponential smoothing parameter. Their focus is

on estimating the parameters of the forecast filter such that multi-step ahead forecast mean squared

error is minimized. Another treatment of the topic is Gersch and Kitagawa (1983); they estimate

structural models using a heuristic 12-step ahead form of the usual Gaussian likelihood, expressed

in a state space form. This innovative paper illustrates the impact of a multi-step ahead model

fitting criterion on forecasting and trend estimation – as expected, the trends resulting from the

12-step ahead criterion are much smoother than those derived from the classical approach. A more

recent contribution is Haywood and Tunnicliffe-Wilson (1997), which provides an explicit formula

for the objective function written in the frequency domain. A limitation of their formula is that

the variables of the objective function do not in general correspond to ARMA parameters, as the

paper essentially fits an unusual parametrization of moving average models.

There is also substantial interest among econometricians in multi-step ahead forecasting arising

from autoregressive and difference autoregressive models. Marcellino, Stock, and Watson (2006)

expounds a common approach involving ordinary least squares estimation of these models so as

to minimize an empirical multi-step ahead forecast error. Proietti (2011) expands on this work,

investigating the forecast performance of these multi-step ahead fitted parameters. However, what is

lacking so far is a coherent general treatment of the subject that handles difference linear processes,

i.e., nonstationary processes that have a Wold decomposition when suitably differenced. The main

objective of this paper is to summarize and generalize all the preceding literature, compactly

expressing the appropriate objective functions in the frequency domain.
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The reason for recourse to the frequency domain is for concision of formulas as well as compu-

tational efficiency. For example, certain formulas in Tiao and Xu (1993) for the multi-step ahead

forecast mean square error involve infinite summations that would only be calculated via truncation

in practice. Using the frequency domain, exact expressions can be derived utilizing the calculus

of residues, avoiding the need to truncate. Well-known Fourier transform algorithms can be used

to speedily compute the asymptotic multi-step ahead forecast mean squared errors, and in turn fit

models to data, as well as determine pseudo-true values.

It is appropriate to outline the limitations of our approach. We do not consider multivariate

time series models here; although the forecast error filter in this context is known and in principle

could be used to generalize our GKL, the actual implementation of such is yet unsolved. However,

it seems a fruitful direction for future work. Secondly, our method only optimizes over one forecast

lead at a time – simultaneous optimization over many leads is not considered; a discussion of this

is provided in Section 2, where we discuss a composite forecasting rule. While it is also natural to

consider an objective function based on a linear combination of forecast leads, this is a larger topic

that we plan to address in a future paper. Finally, our methods are exposited only for ARIMA

models, where the gradient of the spectral density with respect to the parameter vector has a

particularly simple form.

This paper provides the development of asymptotic forecast mean squared error as a model

fitting criterion in Section 2. A key contribution is the practical formula for its computation. Sta-

tistical properties of this GKL function and its optima are discussed in Section 3. Our formulation

of the problem provides well-defined objective functions that are optimized by the true parameters

when the model is correctly specified; otherwise, the parameter estimates converge to the GKL

pseudo-true values. Section 4 explores the GKL function through several illustrations, both ana-

lytically and numerically. Then in Section 5 we explore the discrepancy between empirical forecast

error and GKL through a chemical time series, and display results from a forecasting exercise in-

volving several time series. Here we take models that may be misspecifications for the data and

fit them according to a variety of forecast lead criteria, generating the resulting forecasts. The

multi-step out-of-sample forecasts are then computed and compared across model fitting criteria.

Section 6 provides our conclusions, and the Appendix contains proofs and implementation notes

for ARIMA models.

2 Forecasting as Model Fitting Criteria

In this section we formulate a discrepancy measure for model fitting, which generalizes the KL

discrepancy. This is derived from the asymptotic mean square multi-step ahead forecasting error

for that model. We utilize γk(f) for the lag k autocorrelation function (acf) corresponding to

a given spectral density f – with the convention that γk(f) = (2π)−1 ∫ π
−π f(λ)e

iλk dλ – and its
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associated Toeplitz covariance matrix Γ(f), whose jkth entry is simply γj−k(f). We also use the

notation < g > for any function g with domain [−π, π] to denote (2π)−1 ∫ π
−π g(λ) dλ.

We will speak of time series models in terms of their spectral densities since we are primarily

concerned with the second-order behavior of difference stationary time series. It will be convenient

to restrict ourselves to the “linear class” of spectra L, consisting of integrable functions f that can

be written as f(λ) = |Ψ(e−iλ)|2σ2 for some causal power series Ψ(z) =
∑

j≥0 ψjz
j (this holds iff

| < log f > | < ∞, see Hannan and Deistler (1988)). We will assume that this is an invertible

representation, so that 1/Ψ(z) is well-defined on the unit circle. Here ψ0 = 1, and σ2 is the

innovation variance of the associated time series, i.e., σ2 = exp{< log f >}. Then a linear model is

some subset F of L parametrized by a vector θ, and we may write F = {fθ : θ ∈ Θ} for a parameter

space Θ; we will refer to F as a model.

When σ2 is a parameter of the model, it does not depend upon the other components of θ, and

we can order things such that σ2 is the last component. If there are r+1 parameters in total, then

θr+1 = σ2, and we refer to the first r components by the notation [θ], which omits the innovation

variance. In this case we say that fθ is “separable.” Clearly, ∇[θ]σ
2 = 0 for separable models; if

this gradient is nonzero, then σ2 is not a parameter of the model, but rather a function of the other

model parameters. Then we have [θ] = θ, for a total of r parameters; this case is referred to as a

non-separable model. For example, ARMA models are separable, but component ARMA models

are not. For a separable model, f[θ] can be defined via fθ/σ
2, and clearly only depends on [θ]. In

the non-separable case we use the same definition of f[θ], by a convenient abuse of notation.

As discussed in McElroy and Findley (2010), there exist simple formulas for the h-step ahead

forecast error from a given model applied to a semi-infinite sample of a process. The reason we

choose to base our approach on the semi-infinite predictors, rather than finite sample predictors

(see Newton and Pagano (1982) for a discussion of their computation for stationary processes),

is that we obtain a single time-invariant forecast error filter. This is in contrast to managing a

suite of time-varying forecast error filters whose length each depends upon one’s time location

within the sample; see the Appendix for a brief treatment of such a fitting criterion that we will

refer to as “Least Squares” (LS). The net effect of using the semi-infinite predictors is to create

a computationally simpler objective function that is more tractable for asymptotic analysis and

faster for estimation (there are no matrix inversions involved). Also, note that we consider the

direct forecasting problem; see Stock and Watson (1999), Marcellino, Stock, and Watson (2006),

and Proietti (2011) for comparisons to iterative one-step ahead forecasting filters.

Suppose that our data process {Xt} is differenced to stationarity with differencing operator

δ(B) that has all its roots on the unit circle, such that the resulting Wt = δ(B)Xt is mean zero and

stationary. Suppose that {Wt} follows a model fθ ∈ F , so that we can write fθ(λ) = |Ψ(e−iλ)|2σ2.
Note that each coefficient ψj potentially depends on each of the first r components of θ. Then the

5



h-step ahead forecast error (based on an infinite past) at time t is equal to

[Ψ/δ]h−1
0 (B)

Ψ(B)
Wt;

see the derivations in McElroy and Findley (2010). Also see Findley, Pötscher, and Wei (2004)

for an alternative formulation. The square brackets denote the truncation of an infinite power

series to those coefficients with index lying between the lower and upper bounds. In other words,

[Ψ/δ]h−1
0 (B) is given by computing a (nonconvergent) power series Ψ(B)/δ(B), and taking only

the first h terms. We then designate the rational filter [Ψ/δ]h−1
0 (B)Ψ−1(B) as the h-step ahead

forecast error filter.

If this forecast error filter is applied to a semi-infinite sample from {Wt} then the mean square

of the resulting forecast errors equals

< f̃
|[Ψ/δ]h−1

0 (e−i·)|2

|Ψ(e−i·)|2
>, (1)

where f̃ is the true spectral density of the Data Generating Process (DGP) for the {Wt} series.

Observe that this quantity depends explicitly on δ(B) if and only if h > 1, which means that

one-step ahead forecast error does not involve the unit root properties of the time series, whereas

multi-step ahead forecast error does. In McElroy and Findley (2010) the formula (1) is utilized as

the basis of a model goodness-of-fit diagnostic and is related to the popular statistic of Diebold and

Mariano (1995). However, in this paper we are primarily interested in using it to fit time series

models; in this case, one might substitute the periodogram I (see below) for f̃ in (1).

Let us rewrite (1) as a function of the model parameters [θ]. For any f ∈ L and a given δ, define

f (h)(λ) via |[Ψ/δ]h−1
0 (e−iλ)|2 (its dependence on δ is suppressed in this notation). Then replacing

f̃ in (1) with a generic function g, we obtain

J([θ], g) = <
f
(h)
[θ]

f[θ]
g > . (2)

That is, J([θ], f̃) is the asymptotic mean square h-step ahead forecast error arising from model f[θ] –

note that the model’s innovation variance plays no role in the forecast error filter. But J([θ], I) is an

empirical estimate of the mean squared error, where I(λ) = n−1|
∑n

t=1Wte
−iλt|2 is the periodogram

computed on a sample of size n taken from the differenced series {Wt}. As discussed in McElroy

and Findley (2010) – with derivations in Findley (1991) – J([θ], I) approximately corresponds to

the empirical sum S([θ]) of h-step ahead forecast errors calculated from finite-sample predictors

(see the Appendix for the definition of S([θ])).

When the model spectrum is separable, one can compute J([θ], g) for any given g. If it is

non-separable, e.g., it is an unobserved components model, then computing the Wold coefficients

is laborious. For instance, if the model consists of an ARMA(2,1) cycle plus white noise irregular
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(say, using the basic structural models described in Harvey (1989)), then the parameters readily

determine the spectral density, but its Wold form Ψ must be determined using spectral factorization

techniques. Note that spectral factorization will produce a moving average where the leading

coefficient need not be unity; this can be factored into the innovation variance. In this way (2) can

be computed, although now ∇[θ]σ
2 ̸= 0. We henceforth suppose that J([θ], g) can be evaluated;

this is easy for ARIMA models, as explained in the Appendix.

Now consider the minimization of J([θ], f̃) with respect to [θ] – the optimum [θ̃] yields a fitted

model f
[θ̃]

with smallest possible forecast error within the model F . Likewise we can obtain an

empirical estimate via minimizing J([θ], I). Denote a minimum of J via [θg], where g is alternatively

I or f̃ depending on our interest. Consistency of [θI ] for [θf̃ ] will then follow from asymptotic results

for linear functionals of the periodogram (see Section 3 below).

For the purposes of forecasting, knowledge of [θg] is sufficient, because the forecast filter does

not depend on the innovation variance. But if a knowledge of forecast precision is desired, we must

also obtain σ2. The true innovation variance is denoted by σ̃2 = exp{< log f̃ >}, and we can write

f̃ = f[θ
f̃
]σ̃

2 whenever the model is correctly specified. If the model is separable, then the innovation

variance (either true or empirical) can be computed via

σ2g =
J ([θg], g)

J
(
[θg], f[θg ]

) . (3)

As usual, take g = f̃ to obtain the true innovation variance, and g = I for our estimate of it.

However, if the model spectrum is non-separable, we would already have determined σ2g during the

process of finding the Wold decomposition of the aggregate spectrum. That is, we would already

know both fθg and f[θg ], whose ratio is σ2g . For either of the separable and non-separable cases, (3)

holds.

It follows that σ2I will be consistent for σ̃2, as shown in Section 3 below. Note that setting

g = f̃ in (3) affords an interpretation for the pseudo-true value of the innovation variance, i.e.,

σ2
f̃
. Namely, it is equal to the h-step ahead forecast MSE J([θ

f̃
], f̃) arising from using the specified

model, divided by the normalization factor J([θ
f̃
], f[θ

f̃
]). When h = 1 this latter term equals unity,

and plays no role, but when h > 1 it has an impact. As a result, we have no reason to expect σ2
f̃
to

be increasing in h, even though the h-step ahead forecast MSE is indeed typically increasing in h.

So these equations together give us an algorithm: first minimize (2) with respect to [θ], and then

compute the minimal σ2 via (3). When g = f̃ , this provides us with the so-called pseudo-true values

(which in turn are h-step generalizations of the classical pseudo-true values of the KL discrepancy,

cf. Taniguchi and Kakizawa (2000)), and these are equal to the true parameters when the model

is correctly specified. But when g = I, this method provides us with parameter estimates ([θI ], σ
2
I )

that are consistent for the set of pseudo-true values (no matter whether the model is correctly or

incorrectly specified).
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We now make some further connections of J with the KL discrepancy. It is well-known that

the log Gaussian likelihood for the differenced data {Wt} is approximately proportional to the

Whittle likelihood (Taniguchi and Kakizawa, 2000), which is simply the KL discrepancy between

the periodogram I and the model fθ. This KL discrepancy can be computed for any two positive

bounded functions f, g via the formula

KL(f, g) = < log f + g/f > . (4)

If we wish to fit a model to the data, we minimize KL(fθ, I) with respect to θ, denoting the

resulting estimate by θI . This can be done in two steps when fθ is separable, since then the KL

is rewritten as log σ2 + σ−2 < I/f[θ] > so that the optimal σ2I equals < I/f[θI ] > (this requires

∇[θ]σ
2 = 0). In other words when the model is separable, minimization of KL is equivalent to the

two-step minimization of (2) and (3) for h = 1.

So Generalized Kullback-Leibler (GKL) discrepancy is defined analogously for h ≥ 1:

GKL
(h)
δ (f, g) = < log f > + log < f (h) > +

< g
f f

(h) >

< f (h) >
. (5)

Note that this reduces to (4) when h = 1, since then f (h) ≡ 1. But for h > 1 we have the extra

log < f (h) > term, without which minimization of (5) would not be equivalent to optimization via

(2) and (3). This relationship is described in Proposition 2 of Section 3.

In practice, we can utilize the identities < g > = γ0(g) and

< fI > =
1

n
W ′Γ(f)W

to compute GKL
(h)
δ (fθ, I), where W = (W1,W2, · · · ,Wn)

′ is the available sample. Also because

< log f[θ] >= 0, we obtain

GKL
(h)
δ (fθ, I) = log

(
σ2γ0(f

(h)
[θ] )

)
+
W ′Γ

(
f
(h)
[θ] /f[θ]

)
W

nσ2γ0(f
(h)
[θ] )

. (6)

This is quite easy to compute for ARIMAmodels, for which the autocovariances are readily obtained

(see the Appendix). In particular, no matrices need be inverted (unlike with maximum likelihood

estimation). Computation of multi-step forecasts and forecast error covariances from a finite past

for stationary processes is discussed in Newton and Pagano (1982); our approach utilizes semi-

infinite forecast error filters instead, and thereby avoids much of the complexity required for matrix

inversion.

The formula also holds for the non-separable case – one must first determine the Wold decom-

position for fθ, as described above. The pseudo-true values, i.e., the values to which parameter

estimates converge, are given by the minimizers of GKL
(h)
δ (fθ, f̃). The statistical properties of the

parameter estimates are treated in the Section 3.
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Thus, formula (6) gives a unified method for fitting models to time series data W , which

generalizes Whittle estimation from h = 1 to h > 1. If this procedure is repeated over a range of

h, say 1 ≤ h ≤ H for some user-defined forecast threshold H, we obtain many different fits of the

specified model, with each corresponding parameter estimate θ̂(h) yielding optimal h-step ahead

(asymptotic) mean square forecast error. Of course, these parameters will vary widely in practice,

since there is no need that optimality be achieved over a range of forecast leads for one single choice

of parameters; this is illustrated in the numerical studies of Section 4. Having available multiple

parameter fits of the same model is useful, since each fit is optimal with respect to its own h-step

ahead forecasting objective2.

Hence a strategy for optimal multi-step ahead forecasting is the following. For each h desired,

utilize the forecast filters based on the model fitted according to the GKL
(h)
δ criterion. Over

repeated forecasts, in an average sense, this procedure should prove to be advantageous (in-sample

this is necessarily so). We refer to this process as the composite forecasting rule. It is explored

further in Section 5 on a real time series.

3 Statistical Properties of the Estimates

In this section we develop the statistical properties of GKL. First we present gradient and Hessian

expressions for the separable and non-separable cases. Optimization of GKL can then be easily

related to optimization of multi-step ahead forecasting error J . Then we state consistency and

asymptotic normality results for the parameter estimates under standard regularity conditions.

We begin by studying GKL
(h)
δ (fθ, g) as a function of θ, abbreviated as G(θ). It follows from

the definition (5) that

G(θ) = log σ2 + log < f
(h)
[θ] > +

J([θ], g)

σ2 < f
(h)
[θ] >

. (7)

Note that σ2 may well depend upon [θ] in the non-separable case, but this dependency will be

suppressed in the notation. Now (7) is convenient because it involves the function J . We begin

our treatment by noting that J([θ], f̃) has a global minimum at [θ
f̃
] when the model is correctly

specified – this follows from MSE optimality of the h-step ahead forecast filter. In this case, f̃ ∈ F
and there exists θ̃ such that f̃ = f

θ̃
, so that [θ

f̃
] = [θ̃] when the minimum is unique (this is really

a property of the parametrization of the model).

We next state the gradient and Hessian functions of G for the separable and non-separable

cases. In the former case, ∇′
θ = [∇′

[θ],
∂

∂σ2 ], whereas in the latter case we have ∇θ = ∇[θ], since

there is no differentiation with respect to innovation variance (σ2 is not a parameter).

2The first author thanks Donald Gaver for this insightful perspective.
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Proposition 1 For a separable model, the gradient and Hessian functions of GKL are given by

∇[θ]G(θ) =
< ∇[θ]f

(h)
[θ] >

< f
(h)
[θ] >

+
∇[θ]J([θ], g)

σ2 < f
(h)
[θ] >

−
J([θ], g) < ∇[θ]f

(h)
[θ] >

σ2< f
(h)
[θ] >

2

∂

∂σ2
G(θ) = σ−2 − σ−4 J([θ], g)

< f
(h)
[θ] >

∇[θ]∇′
[θ]G(θ) =

< ∇[θ]∇′
[θ]f

(h)
[θ] >

< f
(h)
[θ] >

−
< ∇[θ]f

(h)
[θ] >< ∇′

[θ]f
(h)
[θ] >

< f
(h)
[θ] >

2

−
∇[θ]J([θ], g) < ∇′

[θ]f
(h)
[θ] > + < ∇[θ]f

(h)
[θ] > ∇′

[θ]J([θ], g)

σ2< f
(h)
[θ] >

2

+
∇[θ]∇′

[θ]J([θ], g)

σ2 < f
(h)
[θ] >

−
< ∇[θ]∇′

[θ]f
(h)
[θ] > J([θ], g)

σ2< f
(h)
[θ] >

2 + 2
< ∇[θ]f

(h)
[θ] >< ∇′

[θ]f
(h)
[θ] > J([θ], g)

σ2< f
(h)
[θ] >

3

∂

∂σ2
∇[θ]G(θ) = σ−4 J([θ], g)

< ∇[θ]f
(h)
[θ] >

< f
(h)
[θ] >

2 − σ−4∇[θ]J([θ], g)

< f
(h)
[θ] >

∂2

∂2σ2
G(θ) = −σ−4 + 2σ−6 J([θ], g)

< f
(h)
[θ] >

.

For a non-separable model, the gradient and Hessian functions of GKL are given by

∇θG(θ) =

∇θσ
2

σ2
+
< ∇θf

(h)
[θ] >

< f
(h)
[θ] >

1− J([θ], g)

σ2 < f
(h)
[θ] >

+
∇θJ([θ], g)

σ2 < f
(h)
[θ] >

∇θ∇′
θG(θ) =

∇θ∇′
θσ

2

σ2
−

∇θσ
2∇′

θσ
2

σ4
+

∇θ∇′
θf

(h)
[θ]

< f
(h)
[θ] >

−
∇θf

(h)
[θ] ∇

′
θf

(h)
[θ]

< f
(h)
[θ] >

2

 ·

1− J([θ], g)

σ2 < f
(h)
[θ] >


+

J([θ], g)

σ2 < f
(h)
[θ] >

∇θσ
2

σ2
+

∇θf
(h)
[θ]

< f
(h)
[θ] >

∇′
θσ

2

σ2
+

∇′
θf

(h)
[θ]

< f
(h)
[θ] >


− ∇θJ([θ], g)

σ2 < f
(h)
[θ] >

∇′
θσ

2

σ2
+

∇′
θf

(h)
[θ]

< f
(h)
[θ] >

−

∇θσ
2

σ2
+

∇θf
(h)
[θ]

< f
(h)
[θ] >

 ∇′
θJ([θ], g)

σ2 < f
(h)
[θ] >

+
∇θ∇′

θJ([θ], g)

σ2 < f
(h)
[θ] >

.

The proof follows from calculus, and is omitted. These expressions are written in terms of J , and its

gradient and Hessian, which can also be expanded further algebraically. The resulting expressions

could be used in the numerical optimization of GKL, though the implementation would be quite

burdensome – it would require calculation of the various derivatives of spectral densities and their

associated inverse Fourier Transforms (FTs). So for many models these formulas are not practically

10



useful, although they serve the purpose of establishing that minimization of GKL coincides with

minimization of (2) together with computation of (3).

Proposition 2 Suppose that the model is separable. If [θg] is a minimum of (2) and σ2g is computed

via (3), then ([θg], σ
2
g) is a global minimum of G(θ). Conversely, for any minimizer θg of G(θ), [θg]

minimizes J([θ], g). The minimal value of G is 1+ log J([θg], g). When the model is non-separable,

the minima of J([θ], g) are also minimizers of G(θ).

So GKL really corresponds to the multi-step ahead forecast error minimization problem. As a

practical matter, minimization of (2) as opposed to GKL is more convenient, as it involves one less

parameter (in the separable case). But GKL is more convenient as a discrepancy measure between

spectra, and for establishing asymptotic results for parameter estimates.

Proposition 2 can be adapted to data fitting (let g = I) or computation of pseudo-true values

(let g = f̃). We always assume that the order of integration d has been correctly specified, and

that appropriately differenced data is passed into the routines.

Recall that when the model is correctly specified, θ
f̃
corresponds to the true parameter vector

θ̃, and we can expect that θI will converge to this value. But when the model is misspecified, θI

converges to θ
f̃
under fairly classical regularity conditions. A first treatment of consistency has been

given in Findley, Pötscher, and Wei (2004), but here we extend the result to asymptotic normality

under some more stringent conditions. Our central limit theorem shows that multi-step estimation

has asymptotic variance that is not in general equal to the inverse of the Fisher information matrix,

when the model is correctly specified. This implies that estimates are inefficient. But when the

model is misspecified, we can no longer say what types of estimates have minimal variance, except

on a case by case basis.

We shall assume that our pseudo-true parameters are not on the boundary of the parameter

set, because the limit theory is non-standard in this case (cf. Self and Liang (1987)). If the

pseudo-true parameter is unique, the Hessian of GKL should be positive definite at that value, and

hence invertible. The so-called Hosoya-Taniguchi (HT) conditions (Hosoya and Taniguchi (1982)

and Taniguchi and Kakizawa (2000)) impose sufficient regularity on the process {Wt} to ensure

a central limit theorem; these conditions require that the process is a causal filter of a higher-

order martingale difference. Finally, we suppose that the fourth order cumulant function of the

process is identically zero, which says that in terms of second and fourth order structure the process

looks Gaussian. This condition is not strictly necessary, but facilitates a simple expression for the

asymptotic variance of the parameter estimates. Let the Hessian of G(θ) with g = f̃ be denoted

H(θ).

Theorem 1 Suppose that θ
f̃
exists uniquely in the interior of Θ and that H(θ

f̃
) is invertible.

Suppose that the process {Wt} has finite fourth moments, conditions (HT1)-(HT6) of Taniguchi

11



and Kakizawa (2000, pp.55-56) hold, and that the fourth order cumulant function of {Wt} is zero.

Then as n→ ∞
√
n
(
θI − θ

f̃

)
L

=⇒ N
(
0,H−1(θ

f̃
)V (θ

f̃
)H−1(θ

f̃
)
)
. (8)

Here the matrix V (θ, f) is defined via

V (θ) = 2 < ∇θ

f
(h)
[θ]

fθ < f
(h)
[θ] >

∇′
θ

f
(h)
[θ]

fθ < f
(h)
[θ] >

f̃2 > .

Remark 1 In order to produce estimated standard errors for parameter estimates, it is best to

proceed as if the model was misspecified (since otherwise we will mis-state the uncertainty); the

quantities in H−1V H−1 are computed by substituting parameter estimates for pseudo-true values,

while plugging in I for f̃ and I2/2 for f̃2 (cf. Chiu (1988) and McElroy and Holan (2009)). With

these substitutions, the matrices can be computed using quadratic forms in the data vector W as

well as its sample autocovariance vector. Of course, if the exact gradient and Hessian are already

used in the numerical optimization procedure, then these quantities can be used to find H.

4 Illustrations

Although it is difficult in general to compute J([θ], g) explicitly, in some special cases this is possible.

We first provide several analytical examples involving stationary and nonstationary DGPs. Then

we consider several numerical illustrations of the GKL objective functions.

4.1 Analytical Derivations of Optima

When forecasting stationary processes long-term, forecasts tend to revert to the mean independent

of the parameter values (this can also be seen in the large h behavior of GKL when δ(z) = 1), and as

a result the objective function will be flat on the majority of its domain, i.e., changes in parameter

values have no impact on forecasting performance. This situation is dramatically different in the

presence of non-stationarity, because the large h behavior of GKL instead tends to infinity, rather

than a constant. Our results below are computed in terms of generic g, which can be taken as

either I or f̃ as context dictates.

First consider fitting an AR(1) model, and denote the AR parameter by ϕ. Then

f[θ](λ) = |1− ϕz|−2

f
(h)
[θ] (λ) =

∣∣∣∣∣∣
h−1∑
j=0

ϕjzj

∣∣∣∣∣∣
2

J([θ], g) =
1

2π

∫ π

−π
g(λ)|1− ϕhzh|2 dλ = (1 + ϕ2h)γ0(g)− 2ϕhγh(g).

12



Thus the concentrated objective function is equal to γ0(g) times 1− ρh(g)+ (ϕ2h − ρh(g))
2
. Unless

the correlation is negative and h is even, this is minimized by ϕg satisfying ϕ
h
g = ρh(g) = γh(g)/γ0(g)

(otherwise the minimizer is ϕg = 0). When ϕg = ρ
1/h
h (g) then σ2g = γ0(g)(1− ϕ2g), and the minimal

h-step forecast error is J([θg], g) = γ0(g)(1− ρ2h(g)). A glance at the formulas for σ2g and J([θg], g)

illustrate a point made in Section 2: although the latter is increasing in h (note that ρ2h(g) → 0 as

h → ∞ for processes with summable autocovariance functions), the former need not be, as in the

ARMA example below.

Let us further suppose that g is the spectrum of an AR(1), so that ρh(g) = ϕ̃h. Then ϕg = ϕ̃,

the case of consistency in the presence of correct model specification. It is easy to check that σ2g

equals the innovation variance of g as well. The minimal forecast error function is proportional to

(1− ϕ̃2h)/(1− ϕ̃2), an increasing function in h. If instead g is the periodogram of the above AR(1),

our estimate is the hth root of γh(I)/γ0(I), the lag h (biased) sample autocorrelation. There is an

efficiency loss, in general, in using this estimate versus just γ1(I)/γ0(I).

Next, suppose that g is the spectrum of an ARMA(1,1) of the form

f
[θ̃]
(λ) =

|1 + ω̃z|2

|1− φ̃z|2
.

The MA(∞) representation of the process has coefficients ψj = φ̃j−1(φ̃+ ω̃) for j ≥ 1 and ψ0 = 1.

We then obtain the autocorrelation sequence – cf. Box and Jenkins (1976) – ρh(g) = φ̃h−1(φ̃ +

ω̃)(1 + φ̃ω̃)(1 + 2ω̃φ̃+ ω̃2)
−1

. So ϕg is either equal to zero, when this correlation ρh(g) is negative

and h is even, or is equal to ρ
1/h
h (g) otherwise. So as h→ ∞, ρ

1/h
h (g) → φ̃ and the MA parameter

has no impact on the minima, which is interesting; this is because the AR parameter governs the

long-term serial correlation. Also, σ2g = σ̃2 · (1− ϕ̃2), which shows that the pseudo-true value of the

innovation variance is less than the actual true σ̃2. Moreover, ϕ̃ is an increasing function of h, so

that σ2g is decreasing in h.

Finally, suppose the process is a gap AR(2) with spectrum

f
[θ̃]
(λ) = |1− φ̃z2|−2

.

The autocorrelations are zero at odd lags, and equal to φ̃h/2 when the lag h is even. Then ϕg = 0

whenever h is odd, and equals
√

|φ̃| unless φ̃ < 0 and h ≡ 2mod 4, in which case ϕg = 0 as well.

Now suppose that we fit an MA(q) model, which has spectral density

f[θ](λ) =

∣∣∣∣∣∣1 +
q∑

j=1

ωjz
j

∣∣∣∣∣∣
2

.

The resulting expression for J is fairly complicated in general, but when h > q we have f
(h)
[θ] = f[θ],

so that J([θ], g) = γ0(g). Thus the concentrated objective function is completely flat with respect

to the parameters. This reflects the fact that an MA(q) model has no serial information by which
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to forecast at leads exceeding q. However, this facet is no longer present when non-stationary

differencing is present.

In particular, suppose q = 1 and h = 1 so that

J(ω, g) =
γ0(g) + 2

∑
k≥1 γk(g)(−ω)

k

1− ω2
.

This poses a highly non-linear optimization problem, unless g has a special form.

The ARIMA(0,1,1) model was studied in Tiao and Xu (1993), and is easily adapted into our

framework; write the MA polynomial as 1− θB and consider arbitrary h. Then

[Ψ/δ]h−1
0 (B) = 1 + (1− θ)

h−1∑
j=1

Bj

when h > 1. The full forecast error filter works out to be

[Ψ/δ]h−1
0 (B)

Ψ(B)
=

1−Bh

1−B
+

θBh

1− θB
=

1 + (1− θ)
∑h−1

j=1 B
j

1− θB
.

Note that this filter corresponds to the transfer function of an ARMA(1,h), and its Wold coefficients

have the curious pattern of being equal to unity up to index h− 1, and equal to θk−h+1 at index k

when k ≥ h. Then the autocovariance sequence satisfies

γk(fθ) =

h− k + θ 1−θk

1−θ + θk θ2

1−θ2
k < h

θk−h+1 1−θk

1−θ + θk θ2

1−θ2
k ≥ h.

Then J(θ, g) =
∑

k γk(fθ)γk(g), and substituting our expressions yields equation (2.3) of Tiao and

Xu (1993). Numerical minimization with g = I essentially truncates the infinite summations to

sample size, because γk(I) = 0 for |k| ≥ n. It is hard to say anything analytically about pseudo-true

values, as the optimization problem is highly nonlinear.

Finally, consider the example of an ARIMA(1,1,0), which was fitted for multi-step ahead fore-

casting via ordinary least squares in Marcellino, Stock, and Watson (2006). Denote the AR poly-

nomial by the usual 1− ϕB. Then the forecast error filter is

[Ψ/δ]h−1
0 (B)

Ψ(B)
=

1−Bh

1−B
− ϕ

1− ϕh

1− ϕ
Bh.

This corresponds to an MA(h) with all unit entries except the last coefficient, which is equal to

−ϕ(1 − ϕh)(1− ϕ)−1; call this ζ(ϕ) for short. Then the autocovariances have a simple structure:

γ0(fϕ) = h + ζ2(ϕ) and γk(fϕ) = h − k + ζ(ϕ) for k ≤ h, and is zero otherwise. Then J(ϕ, g) will

still be nonlinear in ϕ, but it is interesting that only a finite number of autocovariances of g are

involved. In particular,

J(ϕ, g) = γ0(g)[h+ ζ2(ϕ)] + 2

h∑
k=1

γk(g)[h− k + ζ(ϕ)].
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Taking the derivative with respect to ϕ provides two solutions: either ζ̇(ϕ) = 0, or we must have

ζ(ϕ) = −
∑h

k=1 ρk(g). The first case demands a solution to

0 = 1 + 2ϕ+ 2ϕ2 + · · ·+ hϕh−1

and in no way depends on the properties of g. The second case requires solving the polynomial

equation

ϕ+ ϕ2 + · · ·+ ϕh =
h∑

k=1

ρk(g),

which is trivially done by root-finding. Note that when h = 1 we recover the familiar ϕg = ρ1(g)

– recall that the differencing operator has no impact on parameter estimates when h = 1, so we

should just be fitting the AR(1) to the differenced data, indicated by the Whittle likelihood. When

h > 1 a different solution is called for; in this particular case it is very fast to compute.

4.2 Numerical Calculation of Pseudo-True Optima

We look at experimental results by determining pseudo-true values for a range of DGPs and models.

By examining the resulting concentrated GKL objective functions and the pseudo-true values, we

can get a sense of how each model is fitted to the respective DGPs. We will consider the Local

Level Model (LLM) of Harvey (1989), which is defined as consisting of a random walk trend plus

independent white noise. Such a process can be re-written as an ARIMA(0,1,1), where the MA

polynomial is 1− θB (with θ ≥ 0) as in the previous subsection. If the signal-to-noise ratio (SNR)

is q > 0, i.e., the innovation variance of the random walk component is qσ2 and the white noise

variance is σ2, then it is known that

θ =
q + 2−

√
q2 + 4q

2

by solving the spectral factorization problem. Note that as q → 0 we obtain θ → 1, or in other words

the process becomes more like a pure white noise as the SNR decreases. We also consider the Smooth

Trend Model (STM) of Harvey (1989), which is like the LLM except with two differencings. Then

the aggregate process is an ARIMA(0,2,2), and the coefficients ω1, ω2 of the MA(2) are complicated

functions of the signal-to-noise ratio (see McElroy (2008b) for a spectral factorization of the STM).

For our numerical studies, our DGPs are selected from the following list, where d = 1, 2; we

don’t consider d = 0 for the reasons discussed in the previous subsection. In general, we use the

notation Ω(z) = 1 + ω1z + ω2z
2 and Φ(z) = 1 − ϕ1z − ϕ2z

2 for the ARMA process with MA

polynomial Ω and AR polynomial Φ. Also the innovation variance σ2 = 1 in all cases.

• D1: d = 1, ω1 = −.1, ω2 = 0 = ϕ1 = ϕ2.

• D2: d = 1, ω1 = −.8, ω2 = 0 = ϕ1 = ϕ2.
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• D3: d = 1, ω1 = .7, ϕ1 = .2, and ω2 = 0 = ϕ2.

• D4: d = 1, ϕ1 = .9 cos(π/60), ϕ2 = −.81, and ω1 = ω2 = 0.

• D5: d = 2, ϕ1 = 0 = ϕ2, ω1, ω2 corresponding to SNR = .1 in STM

• D6: d = 2, ϕ1 = 0 = ϕ2, ω1, ω2 corresponding to SNR = 10 in STM

This provides an interesting collection of DGPs. The first two processes correspond to the LLM

with a high (D1) and a low (D2) trend-to-noise ratio respectively. The STM is explored through

D5 and D6 for different values of the SNR. Process D3 follows a mixed ARMA model, while D4

generates a cyclical effect with a period of 60 observations. The models considered are – with

d = 1, 2 corresponding to the DGP – ARIMA(p,d,q) with p = 1, q = 0 (AR), p = 0, q = 1 (MA),

and p = 0 = q (WN).

This gives 18 combinations of models and DGPs. For the AR and MA models, the objective

function J of (2) can be computed, and is displayed in Figures 1 and 2 for 1 ≤ h ≤ 10 as a function

of the single parameter (the individual objective functions are not labeled with regard to h, to

avoid cluttering the picture). In some cases the minima are fairly obvious and change smoothly

with respect to h, but in other cases the objective functions can be either flat (resulting in less

reliable estimates of the optima) or cris-crossing (resulting in oscillatory patterns in the optima as

h changes). Tables 1 through 6 summarize the numerical minima, also presenting the pseudo-true

innovation variances.

Firstly, DGP D1 (Table 1) shows the MA(1) parameter equal to truth (up to numerical error),

as this model is correctly specified; but the misspecified ARIMA(1,1,0) model exhibits a h-step

pseudo-true value for ϕ that varies slightly for small h and then stabilizes as h increases. The first

two panels of Figure 1 confirm this behavior. More or less the same behavior is evident for DGP

D2 in Table 2, only the true parameter value having been changed. The fact that the innovation

variance for the WN fit decreases as h increases should cause no confusion, in light of the comments

made previously about the proper interpretation of this parameter.

For DGP D3 we see that the fitted parameters seem to stabilize for increasing h as well (Table

3), and qualitatively the objective functions for this case (bottom row of Figure 1) look quite similar

to those for D2 and D1. DGP D4 is much more interesting, with the objective functions overlapping

one another for different h (top row of Figure 2). As a result, pseudo-true values for the AR and

MA parameters change quite a bit, and seem not to stabilize in h (Table 4). This is no surprise,

given the strong spectral peak in the data process that is ill-captured by the grossly misspecified

models. As h increases, a different snap-shot of this cyclical process is obtained, and the h-step

ahead forecast error is optimized accordingly.

Finally, we have DGPs D5 and D6 (Tables 5 and 6), which exhibit distinct behavior in the

objective functions from the other cases (middle and bottom rows of Figure 2). Unfortunately,
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portions of these likelihoods (especially in the AR model case) are extremely flat, resulting in

numerical imprecisions in the optima shown. The ARIMA(0,2,1) performs slightly better, since in

a sense it is less badly misspecified, the true model being an ARIMA(0,2,2). Also, the increased

SNR in D6 makes the trend in the STM more dominant, which presumably facilitates forecasting

(as compared to a noisier process), and this may be the reason that the optima are better behaved.

5 Empirical Results

We first study a time series of chemical data from an in-sample forecasting perspective, in order

to show the correspondence between GKL and LS. Then we study several seasonal time series

originally featured in the NN3 forecasting competition3, with the interesting finding that GKL with

h = 12 performs competitively with the classical h = 1 criterion. We also examine housing starts

and demonstrate the superior long-term forecasting performance of 12-step GKL over conventional

MLE.

5.1 Chemical Data

We consider Chemical Process Concentration Readings (Chem for short)4. The sample has 197

observations. This series was studied in McElroy and Findley (2010), where it was argued that

an ARIMA(0, 1, 1) model was most appropriate, given several contenders, according to multi-step

ahead forecasting criteria (based on parameter estimates obtained using MLEs). The same model

was identified for the series by Box and Jenkins (1976), and was also studied in Tiao and Xu (1993).

Fitting Chem using GKL
(h)
δ yields the MA(1) polynomials 1 − .698B, 1 − .798B, and 1 − .841B

for h = 1, 2, 3 respectively.

We noted earlier (Section 2) that the GKL objective function given in (2) is an asymptotic form

of the forecast mean squared error. The LS method, in contrast, is based on empirical forecasts

generated from a finite sample of data. As discussed in McElroy and Findley (2010), J([θ], I)

differs from the empirical forecast mean squared error S([θ]) by OP (n
−1/2), where n is the number

of h-step ahead forecasts. We also fitted the ARIMA(0, 1, 1) model using the LS method, to see

whether there were any substantial discrepancies in the parameter estimates. We obtained the

MA(1) polynomials 1− .694B, 1− .773B, and 1− .809B for h = 1, 2, 3 respectively, with values of

the objective function given by .101, .114, and .121. In contrast, the GKL objective function had

minimal values of .102, .115, and .124, respectively; it was also substantially faster to compute.

If we generate forecasts of Chem using a moving window of sub-samples, and average the squared

forecast errors, the resulting behavior should mimic that of S (and J) as the window size increases.

In particular, let us consider the forecast h steps ahead, for h = 1, 2, 3, from a sample consisting of

3See http://www.neural-forecasting-competition.com/NN3/.
4Available from http://www.stat.wisc.edu/ reinsel/bjr-data/index.html.
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time indices t = 1, 2, · · · , 197 − n − h + s, repeated for s = 1, 2, · · · , n. Moreover, let us generate

these forecasts from each of the three GKL and LS objective functions, for h = 1, 2, 3. Then the

within-sample forecast errors are calculated, squared, and averaged over s. The results can be

summarized in a 3× 3 table, where the row j corresponds to the GKL(j) or LS(j) parameter used

and column k corresponds to the forecast horizon. Note that the diagonal entries of the forecast

error matrix correspond to forecasts generated from the composite forecasting procedure described

in the last paragraph of Section 2. Referring to this forecast error matrix via F (n), we can expect

the column minima to occur on the diagonals, as n→ ∞. That is, min{j} Fjk(n) = Fkk(n) for each

k = 1, 2, 3 for n large.

This is heuristic, because as we increase n we reduce the length of the filters used to generate

forecasts; nevertheless, Table 7 displays the pattern of F (n) for n = 50, 75, 100, 125, 150, and the

expected property holds starting at n = 125 (for GKL, and to a limited extent for LS as well). The

2-step GKL does well at 3-step ahead forecasting for smaller n, presumably due to the close values

(−.798 and −.841) for their respective MA parameters.

5.2 NN3 Data

Our goal here is to fit a common set of models to the various time series, generate out-of-sample

forecasts, and compare performance across the various GKL criteria utilized. A realistic assessment

of the composite forecasting rule (see the last paragraph of Section 2), as was done for the Chem

data, is not really possible for the NN3 Data due to the short length of the series (most of the

series are seasonal with less than 12 years in the sample, so that a windowing technique – such

as was utilized with the Chem data – is not compatible with having enough remaining data to

get reasonable parameter estimates). Instead, we examine a separate question: are there any NN3

series for which the forecasting performance “in the competition” generated by a particular GKL
(h)
δ

was superior to the one-step ahead forecasts arising from GKL
(1)
δ ? We describe the results of this

query below.

The original NN3 competition utilized 111 monthly time series of varying lengths and starting

dates, for the most part exhibiting seasonal and trend dynamics, and from each a final span of 18

observations was with-held. We have obtained the full span of each time series from the contest’s

designers, so that we can assess performance.

In our study we attempt to mimic fairly closely the conditions of the competition, but restrict

to a common set of models to fix comparisons and facilitate didactic purposes. Therefore, we used

automatic SARIMA model identification software (X-12-ARIMA version 0.35) to determine the

Box-Cox transform, the preferred SARIMA model, and regression effects (outliers, trading day,

and Easter effects). Out of 111 series, 27 of them required a log transformation and were best

5The seasonal adjustment software of the U.S. Census Bureau.
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fitted by an Airline model, according to X-12-ARIMA. This was the largest subclass of identified

models, so we restricted our viewpoint to these 27 (this also includes some (010)(011) SARIMA

models, which of course are nested in the Airline model). Broadening our comparisons to include

other models would seem to cloud the picture – especially as plenty of series and models are non-

seasonal. We work with the regression-adjusted series in order to allow us to focus upon estimation

of SARIMA parameters.

So to each of the 27 regression-adjusted series, the last 18 observations were withheld, and the

log Airline model was fitted to the remaining data (so we could do the out-of-sample forecasting

exercise), using the GKL objective function with 1 ≤ h ≤ 18. The choice of leads was natural,

given the original competition was to forecast each series up to 18 periods ahead. For each of the 27

series, we computed an 18 by 18 grid of absolute forecast errors, with each column corresponding

to a forecast lead k and each row corresponding to a GKL
(j)
δ objective function. If we can sensibly

combine results across leads (along each row), then we obtain an overall assessment of each GKL
(j)
δ

as a forecasting procedure, for each of the 27 series.

The overall performance of submitted forecasts in the NN3 competition were judged according

to Symmetric Mean Absolute Percentage Error (SMAPE), which is described in Armstrong (1985),

so we adopt this as our method of synthesizing results. Letting Ak denote the target value (k steps

ahead) and Âk its forecast (from one of the GKL
(j)
δ forecasting methods), the formula is

SMAPE =
1

18

18∑
k=1

2|Ak − Âk|
Ak + Âk

whenever Ak and Âk are positive. These quantities were computed for each 1 ≤ j ≤ 18, and for all

27 series. The resulting values are presented in Table 8. Also presented there is the best GKL
(j)
δ

for each given series (i.e., the j that yielded lowest SMAPE), as well as the ratio of its SMAPE

to that of GKL
(1)
δ . In some cases there was substantial improvement over the h = 1 criterion –

namely quasi-maximum likelihood estimation – though results were variable over all. In the best

cases, there was close to a 20 percent improvement over classical estimation.

So if someone used a particular GKL
(j)
δ to produce all forecasts, and submitted the results to

the competition, which criteria would be successful relative to GKL
(1)
δ (for those 27 series)? The

two most successful such leads were j = 1 and j = 12, each of which performed best for 7 out

of the 27 series. Given the seasonal nature of these series, it is not surprising that 12-step ahead

forecasting is important to get right, and that a model optimized with respect to 12-step ahead

forecasting may perform well at shorter forecast leads too.

We examine this idea further with Series 110. In this case j = 12 was the overall winner, and

there is quite a bit of improvement over j = 1 – a 16 percent reduction to SMAPE. The parameters

for the latter case, i.e., the conventional estimates, were .08, .71 for the nonseasonal and seasonal

parameters of the Airline model. But when fitting with GKL
(12)
δ , these became .99,−.25. This
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is a radical, and meaningful, alteration to the parameters – from the long-term perspective, the

process is not really I(2), noting that the MA factor (1− .99B) can essentially be canceled with one

of the nonseasonal differencing operators of the model, reducing it to I(1) (once a compensating

mean regression effect is added). There is also a substantial change in the seasonal moving average

parameter. For this series, it seems likely that the airline model is a misspecification6 – it is in such

scenarios that our multi-step criterion can be expected to offer some improvements to forecasting

performance.

5.3 Housing Starts

As a final example, we study the series of “Total New Privately Owned Housing Units Started”

in the U.S., 1959 through 2004. We omit the period of the Great Recession and some antecedent

years for illustrative purposes (no model fitted to the pre-recession period has reasonable forecast

performance during the slump). The series was adjusted for outliers and other regression effects by

X-12-ARIMA, and the log-transformed data was fitted by an airline model using GKL and LS for

h = 1, 12. In order to perform an out-of-sample forecast exercise, we fit to only the first 40 years

of data. The parameter estimates are given in Table 9, along with values of the objective function.

There were some differences between the LS and GKL estimates in this case. Whereas the

h = 1 GKL parameters were .279 (nonseasonal MA) and .827 (seasonal MA), the LS parameters

were .284 and .936. The minimal values of the objective functions were .00814 (GKL) and .00793

(LS); whereas a single evaluation required 86 seconds for LS, the time was less than a second for

GKL. For h = 12 the GKL parameters were .157 (nonseasonal MA) and .906 (seasonal MA), while

the LS parameters were .176 and .999. The minimal values of the objective functions were .06147

(GKL) and .05864 (LS), and a single evaluation required 83 seconds for LS versus less than a second

for GKL. Although these discrepancies are of some interest, we focus the rest of our discussion on

the GKL estimates. The key point is that the seasonal MA parameter is larger for h = 12, implying

a more stable form of seasonality. When generating forecasts 5 years ahead, the empirical mean

square forecast error over this span for h = 12 GKL is 84 percent of the result from the h = 1

GKL. See Table 9 and Figure 3.

We repeat the analysis with different amounts of data withheld to see a longer span of forecasts.

Parameter estimates from using the first 30 or 20 years of data are given in Table 9, with a dramatic

reduction in forecast error in the latter case. See Figure 3; in this case the discrepancy between

seasonal MA parameter estimates are the greatest. It seems that the 1-step GKL forecasts use

an older trajectory of the data, perhaps due to an increased dependence upon the past merited

by a more chaotic seasonal; the 12-step GKL forecasts seem to utilize a more nascent trajectory,

6The software X-12-ARIMA identifies a SARIMA model by inserting a level shift regressor, whereas the raw data

shows little evidence of dynamic seasonality in its autocorrelation plot.
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consistent with presuming a more stable seasonal pattern. Generalizing these observations, it

seems that a seasonal MA parameter closer to unity generates more “conservative” forecasts that

launch from the very recent past, whereas a smaller seasonal MA parameter leverages more of the

distant past observations. In the extreme case that a seasonal MA parameter is equal to one, the

airline model reduces to an ARIMA(0, 1, 1) with fixed seasonal regressor, which is no longer I(2),

betokening a much less ambitious forecast pattern. For long-term performance, the housing starts

data seems to prefer this conservative approach, and the gains to performance can be substantial.

6 Conclusion

Classical model-based approaches typically emphasize a short-term one-step ahead forecasting per-

spective for estimating unknown model-parameters. This procedure could be justified by assuming

that the “true” model has been identified or that it is known a priori to the analyst. In contrast, we

have emphasized the importance of inferences based on multi-step ahead forecasting performances

in the practically more relevant context of misspecified models. For this purpose, we have proposed

a generalization of the well-known Kullback-Leibler discrepancy and we have derived an asymptotic

distribution theory for estimates that converge to “pseudo-true” values, expanding the consistency

results of Findley, Pötscher, and Wei (2004) to central limit theorems. In contrast to earlier ap-

proaches (e.g., Tiao and Xu (1993) or Haywood and Tunnicliffe-Wilson (1997)), our development

is fairly general, covering all difference-stationary processes with a causal Wold decomposition.

We have illustrated the appeal of our approach by deriving closed-form solutions for a selection

of simple processes, such as the popular ARIMA(1,1,0) model used in econometric forecasting. We

then compared performances of classical (one-step ahead) and generalized (h-step ahead) estimates

in a controlled experimental design based on a selection of simulated as well as practical time series.

Our empirical findings confirm the asymptotic theory, i.e., that the smallest forecast errors for a

given forecast lead arise from the corresponding criterion function for that lead (cf. the discussion of

the Chem series in Section 5.1). We find evidence in Series 110 and the housing starts that unit-root

over-specification (i.e., specifying a differencing operator of too high an order) can be mitigated,

to some extent, by longer-term forecasting criteria. Specifically, we found that for h = 12 in Series

110 one of the MA roots approaches the unit circle, resulting in near cancelation of misspecified

AR-roots.

In this paper we have focused on univariate multi-step ahead forecasting over one forecast lead

at a time. In terms of future work, we are interested in addressing more complex forecasting prob-

lems such as simultaneous optimization over many leads or real-time signal extraction (computation

of concurrent trend or seasonal-adjustment filters) in univariate and multivariate frameworks. The

real-time signal extraction problem can be parsed as an attempt to minimize revisions, which in

turn is dependent on forecast performance at a variety of leads. There is already substantial in-
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terest in the minimization of revisions at statistical agencies (such as the U.S. Census Bureau and

the Australian Bureau of Statistics), and designing a model-fitting criterion to minimize revision

variance seems appealing. Such a procedure would have ramifications for official seasonal adjust-

ment procedures such as X-12-ARIMA7 and TRAMO-SEATS8. We expect the frequency-domain

approach underlying GKL to offer some promising perspectives on these future topics.

Acknowledgement The authors thank a referee and the associate editor for many helpful com-

ments and references that improved our results.

Appendix

A.1 The Least Squares Criterion

We here develop the mathematics for minimization of h-step ahead forecast MSE with respect to

given parameters, based upon finite-sample predictors. This is referred to here as the Least Squares

(LS) method, in contrast to the GKL approach of Section 2, which relies on semi-infinite predictors.

The LS method is popular when the fitted model is an AR(p), because then parameter estimates

can just be obtained via regression (Ordinary Least Squares). However, the forecast formulas are

a bit more complicated for the general ARIMA(p,d,q), and we develop our treatment for difference

stationary processes.

Let X1:n denote our data sample consisting of observations up to time n, and the matrix version

of δ(B) is ∆n, an n× n dimensional matrix given by δ(Ln), where Ln is a lag matrix. That is, the

jkth entry of Ln is one if j = k + 1 and zero otherwise, so that

∆n = δ(Ln) =

d∑
k=0

δkL
k
n.

This matrix differences all but the first d entries of X1:n to stationary {Wt}, and is always invertible.

Consider covariance matrices computed from fθ with dimensions indicated by subscripts, denoted

Σ1:m,1:p for an m×p matrix corresponding to the covariance of W1:m with W1:p. Then the estimate

of present and future values given X1:n is

X̂1:n+h = ∆−1
n+h

[
1d 0

0 Σ1:n+h−d,1:n−dΣ
−1
1:n−d,1:n−d

]
∆n X1:n.

7See Findley et al. (1998) for a discussion of the methodology. The signal extraction method uses nonparametric

symmetric filters applied to the data, which is forecast and backcast extended (implicitly) in order to obtain signal

estimates at the sample boundary.
8The seasonal adjustment software of the Bank of Spain; see Maravall and Caparello (2004) for discussion. Model-

based signal extraction filters are obtained from component models deduced via the method of canonical decomposi-

tion (Burman (1980), Hillmer and Tiao (1982)).
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Here 1d denotes a d-dimensional identity matrix. The final entry produces the forecast h steps

ahead:

εn = X̂n+h|1:n = [0, · · · , 0, 1] X̂1:n+h.

These formulas are derived in equation (11) of McElroy (2008)9, and require the assumption that

the first d values X1:d are uncorrelated with {Wt}. Now the forecast error εn is a function of the

model parameters, and does not depend on the innovation variance. Hence we can write εn([θ]).

The average sum of squares of such forecast errors is then

S([θ]) =
1

N − h− d

N−h∑
n=d+1

ε2n([θ]),

which is by definition the h-step ahead LS criterion. Here N is the total number of observations

available.

In comparison to the GKL criterion function J([θ], I), this LS criterion is more expensive to

compute, requiring a loop over roughly N calculations, each one requiring matrix inversion. Al-

though for particular models, such as the AR(p), the formula can be greatly simplified and the

algorithm quickened accordingly, in general repeated calculations must be made. (Newton and

Pagano (1982) gives helpful results for stationary processes, and there are tricks for fast calculation

of ∆−1
n+h.) In contrast GKL involves no matrix inversion, because of the use of semi-infinite pre-

dictors. Now the finite sample predictors tend to be well-approximated by semi-infinite predictors

even for very small sample sizes, and in practice the performance of J([θ], I) is quite close to that

of S([θ]), as section 5 demonstrates. Also, J([θ], I) is much easier to analyze from a theoretical and

numerical perspective than S([θ]).

A.2 Proofs

Proof of Proposition 2. Plugging [θ] = [θg] and σ
2 = σ2g (3) into the gradient formulas in the

separable case of Proposition 1 shows that θg is a critical point of GKL, since ∇[θ]J([θ], g) evaluated

at [θ] = [θg] equals zero. Plugging into the Hessian formula yields, after simplification:

∇[θ]∇′
[θ]G(θ)|θ=θg =

∇[θ]∇′
[θ]J([θ], g)|θ=θg

J([θg], g)
+
< ∇[θ]f

(h)
[θ] >< ∇′

[θ]f
(h)
[θ] > J([θ], g)

< f
(h)
[θ] >

2 |θ=θg

∂

∂σ2
∇[θ]G(θ)|θ=θg =

∇[θ]

∫
f
(h)
[θ] |θ=θg

J([θg], g)

∂2

∂2σ2
G(θ)|θ=θg = σ−4

g .

9Note an error in the final matrix on the right in the expression for D; the block matrices of the upper block row

should be interchanged.
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This fills out a matrix H(θg), partitioned as[
σ4g c c

′ +B c

c′ σ−4
g

]
.

for c = ∇[θ]

∫
f
(h)
[θ] |θ=θg/J([θg], g) and B equal to the Hessian of J([θ], g) evaluated at [θg], divided

by J([θg], g). Then consider any vector a partitioned into the first r components [a] and the final

component b:

a′H(θg)a =
(
bσ−2

g + σ2g [a]
′c
)2

+ [a]′B[a]

by completing the square. Now since the Hessian of J is positive definite at [θg] by assumption

and J([θg], g) > 0, we conclude that H(θg) is positive definite. For the converse, suppose that θg

minimizes G(θ). Then by the gradient expression in Proposition 1, (3) must hold, and in turn we

must have ∇[θ]J([θ], g) equal to zero at [θ] = [θg].

Next, suppose that the model is non-separable. Recall that ∇θ is the same thing as ∇[θ]. The

expression for the gradient of G(θ) in Proposition 1 shows that when σ2g satisfies (3) and [θg] is a

critical point of J([θ], g), then θg is a critical point of G(θ). Plugging into the Hessian expression

yields ∇θσ
2

σ2
+

∇θf
(h)
[θ]

< f
(h)
[θ] >

∇′
θσ

2

σ2
+

∇′
θf

(h)
[θ]

< f
(h)
[θ] >

+
∇θ∇′

θJ([θ], g)

J([θg], g)
|θ=θg ,

which is positive definite. This completes the proof. 2

Proof of Theorem 1. Note that θg is a zero of G(θ) with the function g, so we can do a Taylor

series expansion of the gradient at θI and θ
f̃
. This yields the asymptotic expression (cf. Taniguchi

and Kakizawa (2000))

√
n
(
θI − θ

f̃

)
= oP (1)−H−1(θ

f̃
)
√
n <

∫
rθ

f̃

(
I − f̃

)
>,

where rθ = ∇θf
(h)
[θ] f

−1
θ < f

(h)
[θ] >

−1
. Our assumptions allow us to apply Lemma 3.1.1 of Taniguchi

and Kakizawa (2000) to the right hand expression above, and the stated central limit theorem is

obtained. 2

A.3 Implementation for ARIMA models

In order to compute parameter estimates and pseudo-true values for a fitted ARIMA model, it

is necessary to carefully set up an optimization algorithm. In the case that the DGP is a known

ARIMA process and one seeks to obtain pseudo-true values, the integrand of J in equation (2) can

always be written as the spectral density of a composite ARMA process, its AR and MA factors

being determined by both the DGP and the fitted model. An exact formula for the integral is given

as follows.
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Say that the AR polynomial of degree p has the form Πj(1− ζ−1
j z)

rj for roots ζj of multiplicity

rj . Similarly let the MA polynomial of degree q has form Πℓ(1− ξ−1
ℓ z)

sℓ for roots ξℓ of multiplicity

sℓ. Then the variance of the ARMA spectrum is

1

2πi

∫
C

Πℓ(1− ξ−1
ℓ z)

sℓ(z − ξ−1
ℓ )

sℓ

Πj(1− ζ−1
j z)

rj (z − ζ−1
j )

rj z
p−q−1 dz,

where C denotes the unit circle of the complex plane. The poles at ζj have multiplicity rj , and

the pole at zero has multiplicity q + 1− p when this is positive. When q + 1− p > 0 the variance

simplifies to

∑
j

∂rj−1

∂zrj−1

[
Πℓ(1− ξ−1

ℓ z)
sℓ(z − ξ−1

ℓ )
sℓzp−q−1(−ζj)rj

Πk ̸=j(1− ζ−1
k z)

rk(z − ζ−1
k )

rk(z − ζ−1
j )

]
|z=ζj

+
∂q−p

∂zq−p

[
Πℓ(1− ξ−1

ℓ z)
sℓ(z − ξ−1

ℓ )
sℓ

Πj(1− ζ−1
j z)

rj (z − ζ−1
j )

rj

]
|z=0.

In practice, this formula does not provide the fastest method of computation except in special cases.

We now describe a method that works for both parameter estimation and calculation of pseudo-true

values. Let Ψ(B) = Ω(B)/Φ(B), where Ω(z) = 1+ω1z+ · · ·+ωqz
q and Φ(z) = 1−ϕ1z−· · ·−ϕpzp

with r = p+ q. First the data should be differenced using δ(B). The main computational issue is

the calculation of the autocovariances in (6); this is detailed in the following algorithm. The user

fixes a given forecast lead h ≥ 1.

1. Given: current value of θ.

2. Compute the first h coefficients of the moving average representation of Ω(B)/(Φ(B)δ(B))

(e.g., in R use the function ARMAtoMA); the resulting polynomial is [Ω/(Φδ)]h−1
0 (B).

3. Compute the autocovariances of f
(h)
[θ] (λ) = |[Ω/(Φδ)]h−1

0 (e−iλ)|2 and f
(h)
[θ] (λ)/f[θ](λ), which

both have the form of ARMA spectral densities (e.g., in R use ARMAacf).

4. Form the Toeplitz matrix and plug into (6).

5. Search for the next value of θ using BFGS or other numerical recipe.

Explicit formulas for the quantity in step 2 can be found in McElroy and Findley (2010). Our

implementation is written in R, and utilizes the ARMAtoMA routine. Although one could find the

autocovariances of f
(h)
[θ] (λ)/f[θ](λ) directly through the ARMAacf routine, one still needs the integral

of f
(h)
[θ] (λ), which is the sum of the square of the coefficients of its moving average representation.

Moreover, finding the MA representation first happens to be more numerically stable. Also note

that in step 3 the R routine ARMAacf has the defect of computing autocorrelations rather than

autocovariances. We have adapted the routine to our own ARMAacvf, which rectifies the deficiency.
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When mapping ARMA parameter values into the objective function, it is important to have

an invertible representation. In particular, the roots of both the AR and MA polynomials must lie

outside the unit circle. To achieve this we utilize our routine flipIt, which computes the roots, flips

those lying on or inside the unit circle (by taking the reciprocal of the magnitude), compensates

the innovation variance (scale factor) appropriately, and passes the new polynomials back to the

objective function. Step 4 is implemented using the toeplitz routine of R.

Step 5 requires a choice of optimizer. The R routine optim is reliable and versatile, as one can

specify several different techniques. The implicit bound on the polynomial roots is automatically

handled through the flipIt routine, so only the innovation variance needs to be constrained – this

is most naturally handled through optimizing over log σ2 instead, which can take as value any real

number. Then a conjugate gradient method such as BFGS (Golub and Van Loan, 1996) can be

used to compute the gradient and Hessian via a numerical approximation; some routines allow

for the use of an exact gradient and Hessian. While the formulas of Section 4 in principle allow

one to calculate these exact quantities, the programming effort is considerable and it is unclear

whether there is any advantage to be gained, since the resulting formulas depend on multiple calls

to ARMAacvf and the like.
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Minima

Models Leads

1 2 3 4 5 6 7 8 9 10

AR(1) ϕ̃ -0.4870 -0.5010 -0.6347 -0.6068 -0.7066 -0.6707 -0.7525 -0.7146 -0.7824 -0.7465

AR(1) σ̃2 1.2498 1.1069 0.7716 0.6979 0.5916 0.5458 0.4943 0.4630 0.4324 0.4099

MA(1) ω̃ -0.8004 -0.8004 -0.8004 -0.8004 -0.8004 -0.8004 -0.8004 -0.8004 -0.8004 -0.8004

MA(1) σ̃2 1.0000 1.0002 1.0003 1.0004 1.0006 1.0007 1.0008 1.0009 1.0010 1.0011

WN σ̃2 1.6400 0.8400 0.5733 0.4400 0.3600 0.3067 0.2686 0.2400 0.2178 0.200

Table 2: Pseudo-true values for models fitted to DGP D2.

Minima

Models Leads

1 2 3 4 5 6 7 8 9 10

AR(1) ϕ̃ 0.5788 0.4731 0.4391 0.4271 0.4232 0.4212 0.4212 0.4212 0.4212 0.4212

AR(1) σ̃2 1.2242 1.5562 1.6185 1.6239 1.6124 1.6011 1.5871 1.5766 1.5686 1.5623

MA(1) ω̃ 0.7804 0.8164 0.8224 0.8244 0.8244 0.8244 0.8244 0.8244 0.8244 0.8244

MA(1) σ̃2 1.0253 1.0959 1.1856 1.2328 1.2612 1.2791 1.2914 1.3004 1.3072 1.3125

WN σ̃2 1.8438 2.9125 3.4113 3.6820 3.8479 3.9590 4.0385 4.0981 4.1445 4.1816

Table 3: Pseudo-true values for models fitted to DGP D3.

Minima

Models Leads

1 2 3 4 5 6 7 8 9 10

AR(1) ϕ̃ 0.4970 0.1178 -0.7385 -0.6068 -0.8663 -0.1896 0.0938 -0.1018 -0.7745 -0.7465

AR(1) σ̃2 2.9078 5.1052 8.7612 6.7663 4.1471 2.3597 1.6041 2.6589 5.5698 5.0134

MA(1) ω̃ 0.7964 -0.7385 -0.7565 -0.6926 -0.5469 -0.2934 0.7305 -0.6966 -0.7166 -0.6727

MA(1) σ̃2 1.9458 9.0817 9.6785 8.2420 5.4644 2.9958 0.6728 9.8307 10.5664 9.0148

WN σ̃2 3.8594 5.7759 5.4789 3.9234 2.4333 1.7826 1.9040 2.2479 2.3479 2.1288

Table 4: Pseudo-true values for models fitted to DGP D4.

Minima

Models Leads

1 2 3 4 5 6 7 8 9 10

AR(1) ϕ̃ -0.6567 -0.9980 -0.8044 -0.9980 -0.8583 -0.9980 -0.8862 -0.9980 -0.9042 -0.9980

AR(1) σ̃2 1.5540 1.4719 0.7471 0.7761 0.5472 0.5735 0.4538 0.4758 0.3991 0.4177

MA(1) ω̃ -0.8543 -0.8144 -0.7924 -0.7804 -0.7725 -0.7665 -0.7625 -0.7585 -0.7545 -0.7525

MA(1) σ̃2 1.1997 0.7769 0.6609 0.6185 0.6011 0.5934 0.5916 0.5897 0.5870 0.5886

WN σ̃2 2.7263 1.2961 0.8747 0.6704 0.5485 0.4671 0.4086 0.3646 0.3301 0.3024

Table 5: Pseudo-true values for models fitted to DGP D5.
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Minima

Models Leads

1 2 3 4 5 6 7 8 9 10

AR(1) ϕ̃ -0.2495 -0.2495 -0.2435 -0.2395 -0.2375 -0.2375 -0.2355 -0.2355 -0.2355 -0.2355

AR(1) σ̃2 1.0003 0.9999 0.9955 0.9961 0.9975 1.0006 1.0003 1.0021 1.0037 1.0049

MA(1) ω̃ -0.2335 -0.2056 -0.1956 -0.1916 -0.1896 -0.1876 -0.1856 -0.1836 -0.1836 -0.1836

MA(1) σ̃2 1.0044 0.9660 0.9655 0.9693 0.9732 0.9752 0.9756 0.9750 0.9774 0.9795

WN σ̃2 1.0670 0.8536 0.7907 0.7602 0.7420 0.7299 0.7212 0.7146 0.7094 0.7053

Table 6: Pseudo-true values for models fitted to DGP D6.

F (n) from GKL F (n) from LS

Fit Lead Forecast Lead Fit Lead Forecast Lead

n = 50 1 2 3 n = 50 1 2 3

1 .09832 .13084 .14282 1 .09828 .13119 .14335

2 .09974 .12207 .12997 2 .09928 .12417 .13300

3 .10094 .11896 .12540 3 .09997 .12123 .12875

n = 75 1 2 3 n = 75 1 2 3

1 .08627 .11267 .12505 1 .08615 .11281 .12530

2 .09018 .10961 .11919 2 .08901 .11026 .12057

3 .09266 .10886 .11711 3 .09073 .10938 .11863

n = 100 1 2 3 n = 100 1 2 3

1 .08673 .10831 .12017 1 .08668 .10847 .12044

2 .08882 .10472 .11365 2 .08814 .10553 .11523

3 .09035 .10357 .11110 3 .08915 .10441 .11300

n = 125 1 2 3 n = 125 1 2 3

1 .08527 .10725 .12125 1 .08516 .10733 .12145

2 .08934 .10621 .11717 2 .08802 .10624 .11798

3 .09232 .10675 .11632 3 .08998 .10626 .11689

n = 150 1 2 3 n = 150 1 2 3

1 .09537 .11315 .12473 1 .09534 .11326 .12494

2 .09764 .11150 .12081 2 .09675 .11163 .12151

3 .09996 .11198 .12026 3 .09811 .11153 .12059

Table 7: Empirical mean square forecast error grids F (n) by window size n = 50, 75, 100, 125, 150,

for the Chem series, utilizing GKL
(j)
δ and LS(j) optima j = 1, 2, 3 (by row) and forecast horizons

k = 1, 2, 3 (by column). Values in bold denote, for each n, the lowest values in each column. On
the left are results for using GKL, and on the right results for using LS.
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GKL one-step GKL 12-step

20 years 30 years 40 years 20 years 30 years 40 years

GKL Minimum .00893 .00910 .008137 .06881 .07427 .061470

Nonseasonal MA .273 .252 .279 .032 .116 .157

Seasonal MA .661 .814 .827 .948 .909 .906

Forecast Error .44170 .01279 .00316 .07550 .01186 .00266

Table 9: Results for fitting of Housing Starts data via using a one-step and a twelve-step GKL
criterion, using either the first 20, 30, or 40 years of data. Values for the GKL minimum are given,
along with parameter estimates for the fitted airline model, and the average of squared forecast
errors based on forecasting up through 2004.
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Figure 1: The left panels display the function J for the AR model, while the right panels displays
the function J for the MA model. The upper panels correspond to DGP D1, the middle panels
to DGP D2, and the lower panels to DGP D3. Overlaid objective functions correspond to h-step
ahead forecast MSE, for 1 ≤ h ≤ 10. Higher curves correspond to greater values of h.
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Figure 2: The left panels display the function J for the AR model, while the right panels displays
the function J for the MA model. The upper panels correspond to DGP D4, the middle panels
to DGP D5, and the lower panels to DGP D6. Overlaid objective functions correspond to h-step
ahead forecast MSE, for 1 ≤ h ≤ 10. Higher curves correspond to greater values of h.
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Figure 3: Housing starts along with forecasts from either 40 years out (top), 30 years out (middle),
or 20 years out (bottom). Forecasts are generated from an airline model fitted using either 1-step
GKL or 12-step GKL.

35


