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Abstract

When there is a need to fit a parametric model to a finite population using data from
a complex sample, the exact likelihood, which incorporates both the survey design
and the probability model for the finite population, can be extremely complicated,
or even intractable. Design-adjusted, approximate likelihoods, that is, modified like-
lihoods which incorporate the sampling design, are often used as an approximation
to the exact likelihood. The design-adjusted, approximate likelihood can be used for
either frequentist inference, or after specifying a prior distribution, Bayesian inference
through the posterior distribution. The goal of this paper is to compare the design-
adjusted, approximate likelihood to the exact likelihood, and to study the accuracy of
this approximation. In this paper, two examples involving binary response data, the
first using cluster sampling and the second stratified sampling, are presented in which
the exact likelihood can be explicitly calculated. It is shown in these examples that
even under extremely informative designs, the design-adjusted approximate likelihood
closely matches the exact likelihood, with accuracy diminishing only for very small
sample sizes or proportions close to the boundary. When lack of available resources
and time constraints encourage the use of a design-adjusted, approximate likelihood,
it is recommended that extreme designs, like the ones illustrated here, be used to help
ascertain the scope of the error.

1 Introduction

Survey designs and subsequent randomization-based estimation procedures have evolved
into a variety of complex methods that can be extremely cost-effective and provide esti-
mates based on minimal assumptions. The design/randomization approach to sample selec-
tion/estimation offers a powerful and straightforward method for estimating a wide variety
of finite population characteristics relatively quickly and efficiently. Besides providing the
source for a wide variety of finite population estimates, including the model-assisted variety,
data collected from a survey are also amenable to modeling. There is no inherent reason
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why data from survey samples cannot be generalized beyond their finite population. How-
ever, modeling survey data presents many methodological challenges due to the possibility
that complex sample selection can substantially change model relationships that would have
been present had complex sampling not been used. Discussion on the difficulties of modeling
complex survey designs can be found in Little (2004) and Gelman (2007).

Statistical model building often starts from the assumption that data are obtained via a
simple random sample or, at most, are gathered from a designed experiment or a trial whose
design-components are an integral part of the model. By contrast, using data arising from
a survey for statistical modeling often introduces multi-layers of selection, weighting and
clustering that are not of direct importance, and are possibly a detraction to the model (but
may be related to the outcomes). The theoretical framework of modeling data from a survey
and accounting for the fact that the design can influence the observations is discussed in
Gelman et al. (1995), for example. The problem with modeling survey data is often more of
a practical one, because accounting for the design through a model may necessitate extremely
large models, with additional effort needed and with the possibility of over-parameterization
due to lack of data available to account for all possible model and design factors and their
interactions.

There are examples for which the exact likelihood can be constructed. Previous work
includes Hartley and Rao, (1968), who derived the likelihood for nt, the number of sampled
units having one of a finite number of characteristics yt, t = 1, . . . , T , under simple random
sampling without replacement, and showed that Bayesian inference could be performed by
using a conjugate Dirichlet prior distribution. Similar work was done by Ericson (1969)
and Hoadley (1969). Closely related is the Bayesian Bootstrap of Rubin (1981), which was
extended by Aitken (2008). It should be noted that the likelihoods derived in these papers
are the sampling likelihoods, and do not specify a distribution at the finite-population level.

If the goal is estimation of a parameter in a model for the finite population, or if the survey
design is complex, finding the exact likelihood is more challenging. If the survey design is
informative, in the sense that selection in the sample is related to the outcome variable, the
finite population model could be different than the likelihood. One approach to reducing
the impact of the survey design is to condition on a judicious choice of design variables,
such as using sample design information as covariates in a regression model, enabling the
use of standard, infinite population distributions and, hence, standard likelihoods methods
for inference. A second approach is to use use random effects to account for clustering, such
as in Malec and Sedransk (1985), Malec et al. (1997), and Sedransk (2008). Zheng and
Little (2003, 2004, 2005) utilize spline models to account for sample selection proportional
to size (PPS). A modeling approach to the selection probabilities, based on conditioning
only on the sampled information, is provided by Pfeffermann, et al. (1998), in which some
asymptotic justification for the approximate distribution was provided. Related work is
Malec et al. (1999), which provided a semi-parametric, empirical Bayes approach to modeling
the probability of selection using a marginal likelihood.

An alternative approach, which is the main focus of this paper, is to use design infor-
mation to construct a function resembling a likelihood. When a parameter from a model
for the finite population is of interest, approximations to the full-scale modeling of both the
data collection and a population model are available, and the approximate likelihood can
be constructed so that parameters from the population model will be included, so standard
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methods for likelihood-based inference can be used. Examples of likelihood approximation
for estimation of a model parameter include Asparouhov (2006), Raghunathan et al. (2007),
Chen et al. (2011) and Joyce et al. (2013). Notable work includes the Bayesian pseudo-
empirical-likelihood of Rao and Wu (2010) for estimation of a finite population parameter.
They provide a design-weighted, possibly weight-calibrated modification to a empirical like-
lihood function. Although devised to cover a general parametric model based on the unique
set of sampled outcomes, when applied to only binary responses (of sole focus, here) the
pseudo-empirical-likelihood specific in equation (4) of Rao and Wu (2010) simplifies to the
design-adjusted, approximate likelihood specified in equation (1).

This paper considers the accuracy a design-adjusted approximate likelihood for cases in
which the design is essentially a nuisance parameter, and the underlying population model
is of interest. In this paper, two examples are given where the exact likelihood can be com-
puted explicitly under complex sampling schemes, and we examine how closely a likelihood
approximation matches the exact likelihood. In these two examples the sampling scheme
is informative, so the likelihood based on only the observed sampled data will be different
than the population-level likelihood. In these examples, the objective is to estimate a pro-
portion based on a small sample of binary response data, such as in small area or small
domain estimation of characteristics or rates. These examples allow us to investigate when
a design-adjusted likelihood can be a good approximation to the exact likelihood, and the
extreme sampling designs used in these examples can be used to ascertain the error in using
the approximate likelihood. This investigation may be particularly informative for Bayesian
methods, in which posterior inference relies on the entire likelihood, so that the effects of
misspecification of the likelihood can be severe.

This paper is organized as follows. Section 2 provides the background needed to specify
the exact likelihood and the approximate, design-adjusted likelihood for the targeted example
of binary data from a binomial superpopulation. Section 3 compares the exact and design-
adjusted likelihood using extreme examples of a cluster sample. Section 4 provides a similar
comparison for the case of a stratified sample. Appendix A summarizes the relationship
between inference using a design-adjusted likelihood and inference using survey-weighted
estimating equations, and provides context for the design-adjusted likelihood approach.

2 Background

2.1 The Exact Approach

In this paper we consider the setup where the finite population is conceptualized as consisting
of independent random variables drawn from a parametric distribution (the “superpopula-
tion” setup). This setup is required, for example, when the parameters of the population
model are of primary interest. A sample from this finite population is then taken and ob-
served according to a known sampling scheme. The likelihood based on the observed data
from the survey must account for these two levels of randomization.

The steps to specifying the exact likelihood for sample data with a superpopulation model
are straightforward and follow from the missing data paradigm of Rubin (1976). First, the
complete likelihood must include both the model for the entire finite population as well as
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the outcomes of those units selected in a sample (the sample design). Let Y denote a vector
of outcomes (binary in this case) and δ denote the vector of sample selection indicators (also
binary) of the finite population. In general, a model for the joint distribution of Y and δ is
specified, conditional on unknown parameters. As this paper is primarily concerned with the
modeling of binary survey data, the unknown parameter of interest is p, the superpopulaton
probability that a population unit’s outcome is a “success.” The joint distribution of Y
and δ is denoted as f (Y , δ | p). Define Y = (y, Y NS), where y and Y NS are the vectors of
sampled and unsampled elements, respectively, of Y , corresponding to δ. The distribution
of the observed sample is obtained from the complete, joint distribution of sample indicators
and the sampled and unsampled outcomes as follows:

L (p) = f (y, δ | p) =

{∑
Y NS

f (Y , δ | p) , if Y is discrete∫
f (Y , δ | p) dY NS, if Y is continuous,

which defines the likelihood.
As noted earlier, identifying a form for f (Y , δ | p) can be a major hurdle in this ap-

proach. In practice, a joint model is usually built using one of the two possible conditional
specifications for the joint distribution:

f (y, δ | p) = f (δ | y, p) f (y | p)

or
f (y, δ | p) = f (y | δ, p) f (δ | p) .

The first specification is known as the selection model in the missing data literature, while
the second is the pattern-mixture model (Little and Rubin, 2002). The first approach is most
useful if inference is based on the population model and the design parameters are irrelevant
while the second is useful when the design parameters are included in the inferential model.
While the second approach is usually easier to develop (such as by including random effects
to account for clustering and fixed effects to account for stratification), the first approach is
relevant when an underlying process, apart from the design, is of interest. Since the design-
adjusted approximation we are investigating is an attempt at specifying the population model
with the design parameters removed, we will only evaluate the first approach.

2.2 The Design Adjusted, Approximate Likelihood Approach

In a complex sampling design, elements that belong to a common cluster (or stratum) are
typically more similar to each other than to elements of another cluster. Because of this,
the number of sampled elements in a complex sample do not represent the distinct elements
in a simple random sample with replacement of the same sample size, say n. Let p̂ be the
design-based estimator of p under the current design and let p̂SRS be an estimator of p under
a simple random sample design of the same sample size as the complex sample. The design
effect for p̂ (Kish and Frankel, 1974) is the ratio

Deff (p̂) =
V̂D (p̂)

V̂SRS (p̂SRS)
,
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where V̂D (p̂) is a design-based estimate of the variance of p̂, and V̂SRS (p̂SRS) can be approx-
imated by p̂ (1− p̂) /n.

The effective sample size, n′, is defined as the ratio of the sample size to the design effect

n′ =
n

Deff (p̂)
=
p̂ (1− p̂)
V̂D (p̂)

,

and gives the sample size of a simple random sample with replacement that has the same
precision (i.e., observed Fisher’s information) as the realized sample under the complex
design. The ratio r = n′/n, indicates the adjustment to the observed sample, n, needed
to compensate for the sample selection. It will have a value of one if the design used was
a simple random sample with replacement, and typically will be less than 1 for complex
designs.

The design-adjusted, approximate likelihood for binary data can now be defined:

Ladj (p) = pn
′p̂ (1− p)n

′(1−p̂) . (1)

Note that under simple random sampling, n′ = n, and (1) reduces to the standard binomial
likelihood. The estimate that maximizes (1) is equal to p̂, the design-based estimate, and
the negative of the inverse of the second derivative of Ladj (p) evaluated at p = p̂ is equal to

V̂D, the design-based estimate of the design-based variance of p̂ (see Appendix A for more
detailed discussion). When only these two estimates are needed, the design-based estimates
are preserved. However, inference based on the other features of the likelihood, such as tail
area, has no design-based counterpart and the approximate and exact likelihoods may not
provide similar results. In addition, (1) is not a likelihood because it is not the sampling
distribution of n′p̂. (If treated as a sampling distribution, (1) is a function of p when summed
over n′p̂.)

This approach is in common use, and the main focus of this paper is understanding the
strengths and weaknesses of using an approximation of the true likelihood. In this paper,
two examples are given where the exact likelihood can be computed explicitly under complex
sampling schemes, and we examine how closely (1) matches the exact likelihood. In these
two examples the sampling scheme is informative, that is, P (Yi = yi | i ∈ S) 6= P (Yi = yi),
where S is the set of indices included in the survey sample, so that the likelihood based
on only the observed sampled data will be different than the population-level likelihood.
In these examples, the objective is to estimate a proportion based on a small sample of
binary response data, such as in small area or small domain estimation of characteristics
or rates. These examples allow us to investigate when a design-adjusted likelihood can
be a good approximation to the exact likelihood, and the extreme sampling designs used
in the examples can be used to ascertain the error in using the approximate likelihood.
This investigation may be particularly informative for Bayesian methods, in which posterior
inference relies on the entire likelihood, so that the effects of misspecification of the likelihood
can be severe.
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3 Example 1: A Simple Random Cluster Sample

Consider the simple case when a finite population consists of an i.i.d. sample of Bernoulli(p)
outcomes. Further, suppose that a sample from the population is obtained via a one-stage
simple random cluster sample without replacement, with equal size clusters, and that interest
is in estimation of p based on the observed sample. The following notation describes this
situation:

• N: number of clusters,

• n: the number of clusters in sample,

• M: cluster size,

• Y: total number of responses coded as 1 out of NM ,

• population model (before clustering): the units j in cluster i are independent, identi-
cally distributed Bernoulli random variables.

The population density function is then

f (Y | p,N,M) =

(
NM

Y

)
pY (1− p)NM−Y . (2)

If the entire population of NM units were observed, the likelihood for the population could
be obtained from (2) and inference would be straightforward. However, only the units in
sampled clusters are observed. If the clustering mechanism were known, cluster membership
could be modeled to remove the effects of the informative sampling design. However, when
cluster membership is excluded from the population model, the design can be informative
(as demonstrated in equations (4) and (5), below).

The effect of the most extreme clustering will be investigated so that the clusters formed
are as homogenous as possible. By extreme clustering of all NM units, we mean that clusters
are composed completely of elements coded as 0, or completely of elements coded as 1, with
the exception of one mixed cluster when Y/M is not an integer.

Define y to be the total number of observed 1’s in the sample. Given Y , the sampling
distribution is fixed. Let bxc be the greatest integer less than or equal to x, and define
A = bY/Mc to be the number of clusters in the population consisting entirely of 1’s. If
mod(Y,M) = 0, the number of sampled clusters consisting entirely of 1’s, a = y/M , follows
the hypergeometric distribution

f (a | A, Y,M,N) =

(
A
a

)(
N−A
n−a

)(
N
n

) ,

for a ∈ {max (0, n+ A−N) , . . . ,min (A, n)}. If mod(Y,M) 6= 0, the sampling distribution
consists of the number of sampled clusters, a, consisting entirely of 1’s and whether of not the
lone heterogeneous cluster is in sample, (i.e. ∆ = 1 or 0), so that y = M ∗a+∆∗mod(Y,N).
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For populations Y of this type, the finite population sampling distribution follows a multiple
hypergeometric distribution of the form

f (a,∆ | A, Y,N,M) =

(
A
a

)(
N−A−1
n−a−∆

)(
N
n

) , (3)

for ∆ ∈ {0, 1} and a ∈ {max(0, n+ A−N), . . . ,min(A, n−∆)}.
In general, the exact likelihood of p can be obtained from the population distribution

and the sampling distribution, and is given by

L (p) = f (y | p,N,M, n) =
∑
Y

f (y | Y,N,M, n) f (Y | p,N,M) ,

where Y is summed over all population values consistent with the observed y and nM − y.
For this example, when a sample of clusters is observed, the exact likelihood can be found

by using the population density in (2) and the sampling density in (3). The form of this
likelihood depends on whether the population count of “successes” is a multiple of M . If
mod(y,M) = 0,

L (p) =

(N−n)M+y∑
Y =y

(b Y
M c
y
M

)(N−b Y
M c−I[mod(Y,M)6=0]

n− y
M

)
(
N
n

) ×
(
NM

Y

)
pY (1− p)NM−Y . (4)

If mod(y,M) 6= 0, then the one heterogeneous cluster has been sampled, and the remaining
unsampled clusters must be completely homogeneous. The exact likelihood can then be
found by summing over possible population clusters A consisting entirely of 1′s:

L (p) =

N−n+b y
M c−1∑

A=b y
M c

(
A

b y
M c
)( N−A−1

n−b y
M c−1

)
(
N
n

) (
NM

MA+ mod (y,M)

)
(5)

× pMA+mod(y,M) (1− p)NM−MA−mod(y,M) .

3.1 Types Of Comparisons

The primary aim is to compare the design-adjusted, approximate likelihood, specified in (1)
and described below in section 3.1.1, with the exact likelihood as derived in equations (4)
and (5). In addition to this primary purpose, we include two other comparisons for contrast.
These additional comparisons are: the binomial likelihood obtained if the sample design is
ignored (in section 3.1.2) and a standardized design-adjusted, approximate likelihood (section
3.1.3); standardized so that, when summed over its support, it is not a function of p.
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3.1.1 Design-adjusted Approximate Likelihood

For the combination of population distribution and sample design, the approximate design-
adjusted approximate likelihood takes the form given in (1):

Ladj (p) = pn
′p̂ (1− p)n

′(1−p̂) , (6)

where

n′ =

{
p̂ (1− p̂) /V̂D (p̂) if 0 < p̂ < 1

n otherwise1
(7)

and V̂D (p̂) is a design-based estimate2 of the variance of p̂.

3.1.2 The Independent Likelihood: Ignoring The Sample Design

Ignoring the dependence caused by the clustering and subsequent cluster sample selection,
a likelihood of the following form could be used:

Lind (p) = find (y | p,M, n) =

(
nM

y

)
py (1− p)nM−y . (8)

3.1.3 Standardized Design-adjusted Likelihood

The design-adjusted likelihood is not a likelihood because its sum over the sample support
will be a function of the parameter. One could devise a number of support spaces and calcu-
late the proportionality constant so that that the likelihood represents an actual distribution.
The following uses the original support space to evaluate the use of adjusting the adjusted
likelihood so that it, once again, can be called a likelihood. In this case, the support of the
sample is taken over the possible sample counts of y:

Lstd (p) = fstd (y | p,M,N, n) =

(
nM
y

)
pn

′p̂ (1− p)n
′(1−p̂)∑nM

y=0

(
nM
y

)
pn′p̂ (1− p)n′(1−p̂)

. (9)

Although this is actually a likelihood (for something), it is a poor approximation to the exact
likelihood as will be shown at the end of this section.

3.2 Results From Comparing The Exact And Approximate Like-
lihoods Of p

In this example, suppose that the finite population size is NM = 1000 and that equal-sized
clusters of size M = 10 are formed. Figure 1 presents the likelihood and approximations
when a sample of n = 10 clusters are selected. When 50 of the sampled binary observations

1If p̂ = 0, 1, the sample is completely homogeneous, so there is no empirical way to adjust for heterogeneity.
2V̂D =

(
1− n

N

)∑
i∈S

(p̂i−p̂)2
n(n−1)
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Table 1: Modal Values Corresponding to Figures 1a - 1c

sampled
successes exact independent design-adjusted

0.50 0.504 0.500 0.500

0.90 0.908 0.900 0.900

0.99 0.999 0.990 0.990

are “positive,” the resulting exact likelihood and its approximations are displayed in Figure
1a. As can be seen, relative to assuming independence, the variance-adjusted likelihood
is close to the exact likelihood. The likelihood assuming independence shares a similar
peak but is too narrow. Similar conclusions can be drawn when 90/100 observations are
successes, as seen in Figure 1b. However, the approximation appears less exact when nearly
all observations are successes (Figure 1c).

Table 1 includes the maxima that correspond to Figures 1a - 1c confirming the visual
observations. Figure 2 contains a close-up of the likelihood in Figure 1c revealing the multi-
modal likelihood a little better: the reason for the multi-modal likelhood is the finite mixing
of separate binomial likelihoods as specified in equations (4) and (5).

Figures 3 and 4 illustrate a few more cases of how the design may affect the approximation
to the likelihood. In all of these examples, the total number of units sampled is 100, and
results are presented when 50, 90 and 99 out of 100 “ones” are observed. Figure 3 essentially
varies the cluster size and Figure 4 varies the total population of clusters. Note that in
both figures, the plots of Figure 1 have been included to aid in comparison. As can be
seen, the approximate likelihood deviates more from the exact likelihood when the cluster
size is relatively large (Figure 3) or when the sampling fraction is large (Figure 4). In
general, however, the exact and approximate likelihoods are similar to each other except in
the extreme cases when p̂ is near a boundary.

Since the exact distribution is based on the most extreme form of clustering and, hence,
should exhibit the greatest difference from a simple random sample, it would be expected
that the likelihood assuming i.i.d. Bernoulli random variables is too peaked. Other features
of the likelihood appear to be different as well, so that caution must be taken if inference

Figure 1: Likelihood comparisons: N = 100, n = 10, M = 10
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(c) 99/100 successes
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about the tails of the distribution (or, sometimes, the modality) is of importance.
As seen in Figure 5, the standardized, approximate likelihood specified in Section 3.1.3

is a poor approximation to the exact likelihood (other, more skewed likelihoods that are not
shown, are even more extreme). The main cause for the distortion is that standardization
at the extremes of the likelihood require large factors. Figure 6 plots the adjustment factor
(i.e. one divided by the denominator of equation (9)) on the log scale, and demonstrates the
extreme weighting needed to standardize the adjusted likelihood for large and small values of
p. Based on results like those shown in Figure 5, it is clear that this ad hoc standardization
of the likelihood is problematic and will not be pursued further.

4 Example 2: Stratified Simple Random Sample

Stratification generally presents less of a problem to modeling since the strata are often
included in the model. However, in cases like two-phase stratification, the entire population
has not been stratified and either the stratification process needs to be modeled in order
to draw inference about the unsampled population or an adjustment, such as the design-
adjusted, approximate likelihood, could be used to try to remove the effects due to the
design.

The following evaluates the possible errors in using a design-adjusted likelihood to counter
the effects of stratification. As in the previous example, the underlying assumption is that
the population is composed of i.i.d. Bernoulli random variables. As an illustration, only two
strata will be considered. The following notation is needed:

• N: number of population units

• {A, B}: stratum identifiers

• Nj: number in stratum j ∈ {A,B} (assumed known)

• nj: sample size in stratum j ∈ {A,B}

Figure 2: Likelihood comparisons - magnified: 99/100 successes, N=100, n=10, M=10
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Figure 3: Comparisons when clusters sizes are 2, 5 and 10. Exact, Independent,
Design-adjusted
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• m1j: number of sampled units which are “successes” (coded as “1”) in stratum j ∈
{A,B}

As in Section 3, define Y to be the total number of binary responses coded as a “1” out
of N , so that,

f (Y | p,N) =

(
N

Y

)
pY (1− p)N−Y . (10)

The allocation of the population units to strata will be modeled as independent Bernoulli
outcomes dependent only on whether the unit is a success or not, so that

P (unit in stratum A | success, φ1) = φ1,

P (unit in stratum A | failure, φ0) = φ0.

Define YA to be the number of successes in stratum A and XA to be the number of failures
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Figure 4: Comparisons when total number of clusters are 20, 100 and 1000 Exact,
Independent, Design-adjusted
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in stratum A, so that

YA | Y, φ1 ∼ Binomial (Y, φ1) ,

XA | N, Y, φ0 ∼ Binomial (N − Y, φ0) .

The size of stratum A is NA = YA + XA and the size of stratum B is NB = N −NA. Note
that in this model formulation there is the possibility that only one stratum will be formed.
The joint distribution of stratum membership is

f (YA, XA | Y,N, φ1, φ0) =

(
Y

YA

)
φYA

1 (1− φ1)Y−YA

(
N − Y
XA

)
φXA

0 (1− φ0)N−Y−XA . (11)

We assume that the stratum totals NA and NB are observable (but not Y , YA or YB), and
simple random samples of sizes nA < NA and nB < NB are selected without replacement
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Figure 5: Likelihood comparisons with standardized design adjusted likelihood: N = 100,
n = 10, M = 10

0.0 0.2 0.4 0.6 0.8 1.0

p

exact

independent

design−adjusted
standardized design 
adjusted likelihood

(a) 50/100 successes

0.0 0.2 0.4 0.6 0.8 1.0

p

exact

independent

design−adjusted
standardized design 
adjusted likelihood

(b) 60/100 successes

Figure 6: Adjustment factor to standardized design adjusted likelihood (log scale)
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p

from strata A and B, respectively. The sampling distribution is then

f (m1A,m1B | Y, YA, N,NA, nA, nB) =

(
YA

m1A

)(
NA−YA

nA−m1A

)(
NA

nA

) ×
(
Y−YA

m1B

)(
(N−NA)−(Y−YA)

nB−m1B

)(
NB

nB

) . (12)

In this example, the goal is estimation of the parameter p, and the parameters φ0 and
φ1 are considered nuisance parameters. By assuming a prior distribution π (φ0, φ1), the
exact likelihood with respect to p can be found by summing over all unobserved random
variables and integrating out the nuisance parameters φ1 and φ0. Here we use the uni-
form prior π (φ0, φ1) = 1. Let S1 = {m1A +m1B, . . . , N − n+m1A +m1B} and S (Y ) =
{m1A, . . . ,min (NA − nA +m1A, Y −m1B)}, where n = nA + nB. Combining the densities
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Table 2: Scenarios for comparing exact and approximate likelihoods

scenario stratum A sample allocation stratum successes

size to stratum A proportional to

stratum size

1 0.5N 0.5 proportional no

2 0.5N proportional no

3 0.5N proportional yes

4 0.75N 0.5 proportional yes

5 0.75N proportional no

(10), (11) and (12) gives an exact likelihood of

L (p) = f (m1A,m1B, NA | N, nA, nB, p) =
∑
Y ∈S1

∑
YA∈S(Y )

f (m1A,m1B | Y, YA, N,NA, nA, nB, )

×
∫∫

f (YA, NA | Y,N, φ1, φ0)× π (φ0, φ1) dφ0 dφ1 × f (Y | N, p)

=
∑
Y ∈S1

∑
YA∈S(Y )

(
YA

m1A

)(
NA−YA

nA−m1A

)(
NA

nA

) ×
(
Y−YA

m1B

)(
(N−NA)−(Y−YA)

nB−m1B

)(
NB

nB

) ×
(
N
Y

)
pY (1− p)N−Y

(N − Y + 1) (Y + 1)
.

(13)

The term 1/ (N − Y + 1) (Y + 1) comes from using a uniform prior on φ0 and φ1, making
the appropriate transformation of (11), and integrating over the hyperparameters.

The total sample size, n, is fixed. As in any stratified sample design, the allocation of n
to strata is under the control of the survey design. Here, two types of sample allocation will
be investigated: proportional allocation and oversampling by allocating sample to stratum
A one half the proportional amount (i.e., nA = 0.5nNA/N). Two possible total stratum sizes
will also be investigated: equal size strata and strata size ratio of 3:1. Lastly, to complete the
investigation, the effect of a disproportionate number of successes within strata is included
as part of the evaluation as two possible situations; one, in which the number of stratum
successes are proportional to the stratum size and the other where the number of stratum
successes are as disproportionate as possible given the constraint due to the overall sample
proportion. The five scenarios based on these criteria are shown in Table 2.

4.1 Types Of Comparisons

As stated earlier, our objective is to compare the design-adjusted, approximate likelihood
with the corresponding exact likelihood. In this case, when the design is a stratified sample,
the exact likelihood is specified by 13 and the design-adjusted, approximate likelihood is
detailed in Section 4.1.1.

Although the comparison between the exact, marginal likelihood and the design-adjusted
likelihood is our primary goal, as in section 3, we include comparisons with other approximate
likelihoods for contrast. Here, we include a likelihood that would be appropriate if the sample
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design was non-informative, as detailed in section 4.1.2, where neither the weights nor any
other feature in the sample design needs to be accounted for in the likelihood. We also
include a weighted likelihood, detailed in section 4.1.3 that uses the usual Horvitz-Thompson
estimate of the population proportion but the only uses an adjusted likelihood that matches
a simple random sample equal to the sample size.

4.1.1 Design-adjusted Likelihood

As described in Section 2.2, the design-adjusted likelihood takes the form

Ladj (p) = pn
′p̂ (1− p)n

′(1−p̂) , (14)

where

n′ =

{
p̂ (1− p̂) /V̂D (p̂) if p̂ 6= 0, 1

n otherwise3
(15)

and V̂D (p̂) is a design-based estimate4 of the variance of p̂.

4.1.2 Unweighted Likelihood

Disproportionate sampling in strata is reflected in the sampling weights. As a reference, how-
ever, the likelihood based on ignoring the design completely, (that is, ignoring the weights)
will be used for comparison:

LU (p) = pm1A+m1B (1− p)n−(m1A+m1B) . (16)

4.1.3 Weighted Likelihood

An approximate likelihood often used in applications is one that uses the sample weights but
adjusts the weighted counts to equal the sample total. Define the weighted likelihood to be

LW (p) = pnp̂ (1− p)n(1−p̂) , (17)

where, p̂ = (wAm1A + wBm1B)/(wAnA + wBnB) and wA = NA/nA, wB = NB/nB.

4.2 Comparisons Of The Exact and Approximate Likelihoods

This section presents comparisons based on the five scenarios defined in Table 2. Each of
these five scenarios will be investigated for sample outcomes with a p̂ near 0.5 and, also, p̂
near 0.9; both for a very small sample size of ten and for a small sample size of 100. Figures
7 and 8 present results from the five scenarios based on these sample sizes. Figure 7 is for

3If p̂ = 0 or 1, the sample is completely homogeneous, so there is no empirical way to adjust for hetero-
geneity.

4V̂D = 1
N2

∑
k∈{A,B}

(
N2

k(Nk−nk)
Nk−1

p̂k(1−p̂k)
nk−1

)
, where p̂k = m1k/nk
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Figure 7: Likelihood Comparisons: p̂ around 0.5, varied sample size. Exact,
Weighted, Design-adjusted, Unweighted
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outcomes in which the weighted estimate proportion is 0.5. Figure 8 presents results when
the weighted sample proportion is 0.9.

Not surprisingly, there is little difference between any of the methods for scenario three
(even the unweighted estimates) due to the fact that both the sample size and the sam-
pled outcomes are proportional to stratum membership and stratum rate. In general, the
non-proportional allocation illustrated in scenarios 1 and 4 produce the greatest deviation
between the exact and either the weighted likelihood or the design-adjusted likelihood. In
scenario 4, the design-adjusted likelihood follows the exact integrated likelihood fairly closely
except when the sample size is very small. In summary, both using proportional allocation
and drawing a relatively large sample improve the design-adjusted likelihood.

16



Figure 8: Likelihood Comparisons: p̂ = 0.9, varied sample size. Exact, Weighted,
Design-adjusted, Unweighted
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5 Summary

We have presented some simple examples showing that the design-adjusted approximate
likelihood approach for inference is tenable even with some extremely informative designs.
We have also identified some areas of concern. Given that the design-adjusted approach is
relatively easy to implement, the question arises as to when it can be used in applications
(especially in model-based estimation problems with small sample components). The exam-
ples presented here suggest a relatively quick way to evaluate the use of a design-adjusted
likelihood for specific applications by devising an extreme design and evaluating the results
against the corresponding exact likelihood. This should often be easier than trying to model
the entire design. Even PPS designs can be quickly evaluated, in this manner, by grouping
units with similar selection probabilities into strata and evaluating the approximate likeli-
hood against an exact likelihood based on this approximate stratification.

Devising extreme designs should not be difficult once a sample is observed. For example,
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given a cluster sample an extreme design could specify that all unsampled clusters were as
homogeneous as possible (as in the examples here). A more realistic design would be to base
the population distribution on the distribution of the sampled clusters.

The models in the two examples illustrated here are often used as the basic components
of hierarchical models that are used in small area estimation and meta-analysis. Xie et al.
(2006) show the dramatic effect of the distributional assumption on inference at the small
area component level by evaluating t-distributions against a strict Normal distribution. In
conclusion, the distributional assumptions used in these, often simple, components should
be evaluated before being used to make inferences.

Appendix

A Similarities Between the Design-Adjusted Approxi-

mate Likelihood Approach and the use of Estimat-

ing Equations

Define unit i’s sample weight to be wi which is based on its selection probability and, addi-
tionally, sample-based non-response adjustment and post-stratification/coverage adjustment.
The effective sample size, n′, can be used to approximate the likelihood by the product

A (p) =
∏
i∈S

pn
′wiYi (1− p)n

′wi(1−Yi) , (18)

where S is the set of sampled units.
Treating A (p) as a likelihood allows to one use standard likelihood methods for inference.

An estimator for p can be found by maximizing A (p), or equivalently, by finding a root of
the derivative of the logarithm of (18), that is, a root of the equation∑

i∈S

n′wi
Yi − p
p (1− p)

= 0, (19)

to get the usual survey-weighted estimate for the population proportion

p̂ =

∑
i∈S wiYi∑
i∈S wi

. (20)

Note that (19) has a resemblance to a survey-weighted estimating equation (Binder,
1983), ∑

i∈S

wi
∂ log f (yi | θ)

∂θ
= 0, (21)

with the exception that, unlike the survey weights in equation (21), (19) contains the ad-
ditional weighting factor, n′, that is also a function of the observed Yi. In this particular
application, however, the solution of (19) is identical to the solution of (21) when f (yi | θ)
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is a Bernoulli distribution. Hence (19) involves an estimating function which can be iden-
tified with the survey-weighted estimating function in (21), which is optimal in the sense
of Godambe and Thompson (1986). Unfortunately, in Bayesian inference, the optimality
properties of Godambe and Thompson (1986) are not enough because the entire likelihood
is used, not just the maximum and local curvature at the maximum. It may also be worth
noting, that even the frequentist optimality properties in Godambe and Thompson (1986)
are not applicable in general when design-based scaling factors (such as the value of n′ in
equation (19)) vary across the sample.

There are several difficulties in attempting to use a likelihood-based analysis using survey
data. The first is that the data from a survey are not independent realizations of a random
variable, and when the survey design is informative, the form of the likelihood based on the
observed survey data will be different from the population-level likelihood. The use of the
design effect and the effective sample size is an attempt to correct for this, by approximating
the number of independent observations that would give equivalent results to using the
survey data.

Second, incorporating the scaling factor n′ and survey weights wi into (18) and treating
A (p) as a likelihood with independent factors can be misleading, in the sense that there is
an implied reduction or inflation of the amount of information in the sample, depending on
how the weights are scaled. Notice that the estimating function in (19) or the survey weights
wi can be scaled by any constant factor, say c. If the survey weights are scaled by c, the
resulting estimating equation ∑

i∈S

cn′wi
Yi − p
p (1− p)

= 0

has the same point estimate p̂ in (20) as a root. However, computing the Fisher information
after scaling the weights, assuming A (p) is the exact likelihood, gives cn′

∑
i∈S wi/p (1− p)

(compared to n/p (1− p) in the i.i.d. setting). The scaling factor c can be changed arbitrarily
to give the illusion of increased information in the sample. For this reason, we assume the
survey weights have been scaled so that

∑
i∈S wi = 1. Since the effective sample size n′ is

less than, or equal to n, the information implied by the approximate likelihood A (p) will
not be greater than if the sample was a realization of i.i.d. random variables.
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