
 

 
Report Issued: August 21, 2014 

 
Disclaimer: This report is released to inform interested parties of research and to encourage discussion.  
The views expressed are those of the authors and not necessarily those of the U.S. Census Bureau. 

 

 
 
 

 
 
 

RESEARCH REPORT SERIES 

(Statistics #2014-07) 

 
 

A Simple Method of Exact Optimal Sample Allocation  

under Stratification with Any Mixed Constraint Patterns  

 

Tommy Wright 

 
 

 

 

 

 
 

 

 

 

Center for Statistical Research & Methodology 
Research and Methodology Directorate 

U.S. Census Bureau 

Washington, D.C. 20233 

 

 

 
 

 

 

 

 
 
 
 
 
 
 
 

 





A Simple Method of Exact Optimal Sample Allocation under
Stratification with Any Mixed Constraint Patterns

Tommy Wright
U. S. Bureau of the Census

Abstract

While making a surprising observation linking Neyman (1934) sample allocation in probability sampling
and the current method used to allocate the seats in the U. S. House of Representatives called equal propor-
tions, Wright (2012) provides an exact optimal allocation [n1, ..., nh, ..., nH ] of the fixed overall sample size
n among H strata under stratified random sampling that minimizes the sampling variance V ar(T̂Y ) of an

estimator of a total T̂Y subject to the constraint n =
H∑

h=1

nh. The exact optimal allocation avoids the need

to round to integer values, as is the case with Neyman allocation. Neyman allocation with rounded integers
does not always lead to the optimal allocation.

In this paper, we demonstrate a very easy extension and generalization of the result in Wright (2012)
to the problem of finding an exact optimal allocation [n1, ..., nh, ..., nH ] to minimize the sampling variance

subject to n =
H∑

h=1

nh and additional mixed constraint patterns 0 < ah ≤ nh ≤ bh ≤ Nh, where n, Nh, ah,

and bh are fixed integers and Nh is the size of the hth stratum. Avoiding the costly tendency to round up to
ensure minimum sampling variance, the exact optimal allocation is especially useful in applications where
H is very large and there are minimum and maximum size constraints on the allocated sample sizes nh, as
is the case with the Census Bureau’s Service Annual Survey which has H = 391 sampling strata.

The presented methods are what some might call “greedy” algorithms, and the methods solve a non-
linear optimization problem with linear constraints over a space of integer values. While it’s common that
greedy algorithms are easy to compute, they are not guaranteed to find the global optimum. Remarkably,
the presented simple algorithms always find the global optimum.

KEY WORDS: Exact optimal allocation; Mixed constraint patterns; Neyman allocation; Stratification.

1. INTRODUCTION

In perhaps the most significant advance in probability sampling theory, Neyman (1934) discusses
the desire to have a “representative method” when sampling from a finite population; specifically,
he considers the “...two different aspects of the representative method. One of them is called the
method of random sampling and the other the method of purposive selection.” Neyman argues in
favor of random sampling, or more specifically, stratified random sampling. In such cases, a random
sample is selected independently from each subpopulation called a stratum.

There are several reasons why one might want to stratify before sample selection (Cochran,
1977; Fuller, 2009; Lohr, 2010): (1) estimates of stated precision are desired for each stratum as
well as for the overall population; (2) sampling and data collection objectives, operations, costs,
and challenges may differ greatly in different parts of the population (e.g., city vs farm areas)
or for different data collection modes (e.g., mail, telephone, Internet, face-to-face, administrative
records); and (3) stratification may produce a gain in precision in the estimates of characteristics
of the entire population, especially when it is possible to divide a heterogeneous population into
subpopulations, each of which is internally homogeneous.

Tommy Wright is Chief of the Center for Statistical Research and Methodology, U. S. Bureau of the Census, Washing-
ton, DC 20233 (E-mail: tommy.wright@census.gov) and adjunct faculty in mathematics and statistics at Georgetown
University. The views expressed are those of the author and not necessarily those of the U. S. Bureau of the Census.
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Under stratified random sampling with a fixed overall sample size n, one might desire to allo-
cate n proportionally among the strata according to stratum sizes, i.e., larger strata should have
more sample units than smaller strata. Proportional allocation ignores the variability within each
stratum. While considering stratum sizes as well as the variability within each stratum, Neyman’s
approach allocates n with a goal of minimizing the sampling error of the estimate of a total of the
overall population. However, his result faces the issue of noninteger solutions, and we have the
issue of what to do with the fractional parts. Integer programming could be used as Fuller (2009)
notes. Concern over fractional parts has received limited attention, and it is a focus of this paper.

In the allocation of the overall sample to the various strata, one may frequently need to round to
integer values. The issue is often handled by controlled rounding. This is done by sorting fractional
parts (non-integer remainders) from the largest to smallest and assigning the desired number of ad-
ditional units to the strata with the largest fractional parts. We will illustrate controlled rounding
in Section 2.3.

In this paper, we consider the problem of exact optimal allocation of an overall sample size n
in stratified random sampling. Specifically, we demonstrate: (1) that Algorithm I gives an exact
optimal allocation where nh ≥ 1 for all h; (2) that Algorithm II gives an exact optimal allocation
where nh ≥ 2 for all h; (3) that controlled rounding with Neyman allocation does not always lead
to the optimum allocation; and (4) that Algorithm III gives an exact optimal allocation where
0 < ah ≤ nh ≤ bh ≤ Nh for all h where ah and bh are stated positive integers.

2. SAMPLE ALLOCATION

2.1 Neyman Sample Allocation

Assume a finite population of N units is partitioned into H subpopulations of N1, N2, N3, ..., NH

units, respectively. These subpopulations are disjoint and together their union gives the entire pop-
ulation. Thus N = N1 + N2 + N3 + · · · + NH . The subpopulations are called strata. We assume
that the values N1, N2, ..., NH are known.

The general setup where Yhj is the value of interest for the jth unit in the hth stratum
(j = 1, ..., Nh and h = 1, ...,H) is

Stratum 1 Stratum 2 · · · Stratum h · · · Stratum H

N1 N2 · · · Nh · · · NH

Ȳ1 Ȳ2 · · · Ȳh · · · ȲH

S2
1 S2

2 · · · S2
h · · · S2

H

where Ȳh and S2
h are the mean and variance for the population values in the hth stratum, respec-

tively. Specifically

Ȳh =

Nh∑
j=1

Yhj

Nh
and S2

h =

Nh∑
j=1

(Yhj − Ȳh)2

Nh − 1
.
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In general and for the values Yhj , the population total TY is

TY =
H∑

h=1

Nh∑
j=1

Yhj =
H∑

h=1

NhȲh. (1)

To estimate TY under the classical design-based approach, we take (independent) simple random
samples - one from each stratum - of sizes n1, n2, ..., nH respectively (entire process called stratified
random sampling) and obtain the sample means ȳ1, ȳ2, ..., ȳH . Note that nh ≥ 1 for all h.

Each ȳh can be considered a random variable. Indeed ȳ1, ȳ2, ..., ȳH are independent random
variables. Hence a natural estimator for TY is

T̂Y =
H∑

h=1

Nhȳh. (2)

It is known that T̂Y is an unbiased estimator of TY , and the sampling variance is

V ar(T̂Y ) =
H∑

h=1

N2
h

Nh − nh

Nh

S2
h

nh
. (3)

For a given overall sample size n, there is interest in the question regarding how to allocate
n among the H strata before sampling. In his landmark paper of 1934, Neyman shows that for
fixed n, the allocation (known as Neyman allocation) of n that minimizes V ar(T̂Y ) subject to the

constraint n =
H∑

h=1

nh is given by

nh =
NhSh

H∑
i=1

NiSi

n h = 1, 2, 3, ...,H. (4)

Neyman obtains this result (4) by noting that V ar(T̂Y ) in (3) can be written as in (5).

V ar(T̂Y ) =
N − n

n

H∑
h=1

NhS2
h +

H∑
h=1

nh(
NhSh

nh
−

H∑
i=1

NiSi

n
)2 − N

n

H∑
h=1

Nh(Sh −

H∑
i=1

NiSi

N
)2 (5)

From the middle sum of (5) and by noting that the first and third sums of (5) are fixed relative
to nh, the result (4) follows. It turns out that Tschuprow (1923) had obtained the result over a
decade earlier, showing that the result follows as a special case of a more general problem.

Because the nh determined as just noted in (4) are almost never positive integers, we might
round up in practice with the resulting overall sample size being possibly near n+H instead of the
fixed n. If H is large or if resource limitations dictate that the stated n not be exceeded, this is a
concern.

2.2 Exact Optimal Sample Allocation

Is it possible to obtain an exact allocation of fixed n that minimizes V ar(T̂Y ) in which all nh

are positive integers and n =
H∑

h=1

nh? In this section, we show that the answer is yes.
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Noting that V ar(T̂Y ) can be written as

V ar(T̂Y ) =
H∑

h=1

N2
hS2

h

nh
−

H∑
h=1

NhS2
h, (6)

that the overall sample size n is fixed, and that
H∑

h=1

NhS2
h is a constant relative to nh , it is easy to

see that finding nh to minimize V ar(T̂Y ) for fixed n is equivalent to finding nh to minimize

H∑
h=1

N2
hS2

h

nh
(7)

for fixed n =
H∑

h=1

nh.

From

1− 1
nh

= (1− 1
2
) + (

1
2
− 1

3
) + · · ·+ (

1
nh − 1

− 1
nh

)

=
1

1 · 2
+

1
2 · 3

+
1

3 · 4
+ · · ·+ 1

(nh − 1) · (nh)
,

we see that
1
nh

= 1− 1
1 · 2

− 1
2 · 3

− 1
3 · 4

− · · · − 1
(nh − 1) · (nh)

. (8)

By substituting (8) into (7), we proceed to determine n1, n2, ..., nH to minimize

H∑
h=1

N2
hS2

h(
1
nh

) =
H∑

h=1

N2
hS2

h −
H∑

h=1

(
N2

hS2
h

1 · 2
+

N2
hS2

h

2 · 3
+ · · ·+ N2

hS2
h

(nh − 1)(nh)
). (9)

Because
H∑

h=1

N2
hS2

h in (9) is a constant for given values N1, ..., NH , S2
1 , ..., S2

H , we proceed to deter-

mine n1, n2, ..., nH to maximize the sum of H sums

H∑
h=1

(
N2

hS2
h

1 · 2
+

N2
hS2

h

2 · 3
+ · · ·+ N2

hS2
h

(nh − 1)(nh)
) =

(
N2

1 S2
1

1 · 2
+

N2
1 S2

1

2 · 3
+ · · ·+ N2

1 S2
1

(n1 − 1)(n1)
) + · · ·+ (

N2
HS2

H

1 · 2
+

N2
HS2

H

2 · 3
+ · · ·+ N2

HS2
H

(nH − 1)(nH)
) (10)

subject to the constraint
H∑

h=1

nh = n. By careful inspection, we see that (10) will be maximized if

we pick the n−H largest terms in the sum of H sums, subject to the constraint.

Perhaps, a clearer way to see how to determine n1, ..., nH to maximize (10) is to imagine the
(H)× (n−H) array where the hth row consists of the terms of the hth sum in (10):

N2
hS2

h

1 · 2
,

N2
hS2

h

2 · 3
, · · · , N2

hS2
h

(n−H) · (n−H + 1)
.

4



Note that the hth sum has nh − 1 strictly decreasing terms. So to maximize the sum of H sums in

(10) subject to the constraint
H∑

h=1

nh = n, we pick the (n1 − 1) + (n2 − 1) + · · · (nh − 1) = n −H

largest terms in the (H)× (n−H) array.

Because n is fixed and each stratum must have at least one sample unit, we see that (10) will
be maximized, our constraint will be satisfied, and each stratum will have at least one sample unit if

(i) each stratum is assigned one unit in the sample, and
(ii) each stratum receives an additional sample unit each time it has a term in (10) that

appears among the n−H largest terms.

Because the quantities NhSh and nh are all positive, selecting the n−H largest terms among

N2
hS2

h

1 · 2
,

N2
hS2

h

2 · 3
, ...,

N2
hS2

h

(nh − 1)(nh)
(11)

for h = 1, 2, ...,H is the same as selecting the n−H largest terms among

NhSh√
1 · 2

,
NhSh√

2 · 3
, ...,

NhSh√
(nh − 1)(nh)

(12)

for h = 1, 2, ...,H. Because the values of the terms in (11) can be quite large, in practice, we prefer
to use the equivalent values in (12).

Hence it should be clear that our solution for the sample allocation problem is as follows.

Exact Optimal Allocation Algorithm I (Wright, 2012)

Step 1: First, assign one unit to be selected for the sample from each stratum.
Step 2: Compute the array of priority values where each row corresponds to one of the

strata (For simplicity, we assume that the NhSh values are ordered so that N1S1 ≥
N2S2 ≥ · · · ≥ NHSH):

N1S1√
1 · 2

N1S1√
2 · 3

N1S1√
3 · 4

· · ·
...

NhSh√
1 · 2

NhSh√
2 · 3

NhSh√
3 · 4

· · ·
...

NHSH√
1 · 2

NHSH√
2 · 3

NHSH√
3 · 4

· · ·

Step 3: Pick the n−H largest priority values from the above array in Step 2 along with the
associated strata. Each stratum is allocated an additional sample unit each time
one of its priority values is among the n−H largest values.

Note that for (8) – (12) to be valid, we must have nh ≥ 2. Because each stratum gets at least
one sample unit, we will only need to consider strata to see if they get additional sample units, and
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in these cases nh ≥ 2. For convenience, we could alternately define n′
h to be the additional sample

units to be assigned to stratum h beyond the first one which it receives by Step 1. In this case,
nh = n′

h + 1 and the notation in (12) becomes

NhSh√
1 · 2

,
NhSh√

2 · 3
, ...,

NhSh√
n′

h · (n′
h + 1)

(13)

In the notation of (13), the priority value
NhSh√

1 · 2
can be viewed as stratum h has one sample

unit; and if this priority value is among the largest n − H values, it would mean that stratum h

gets a second sample unit. Similarly, the priority value
NhSh√

2 · 3
can be viewed as stratum h has

two sample units; and if this priority value is among the largest n−H values, it would mean that
stratum h gets a third sample unit. All priority values can be viewed in a similar manner.

Note that the size of the array in Algorithm I is not greater than (H) × (n −H) because it is
possible that all n−H sample units in Step 3 of Algorithm I could come from the first stratum.

Unbiased estimation of V ar(T̂Y ) requires the selection of at least two units from each stratum

in addition to the requirement that n =
H∑

h=1

nh. In such cases and considering the comments of the

previous paragraph, the following modification minimizes V ar(T̂Y ) subject to both requirements.

Exact Optimal Allocation Algorithm II (Wright, 2012)

Step 1′: First, assign two units to be selected from each stratum.
Step 2′: Compute the array of priority values where each row corresponds to one of the

strata (Assume N1S1 ≥ N2S2 ≥ · · · ≥ NHSH):

N1S1√
2 · 3

N1S1√
3 · 4

N1S1√
4 · 5

· · ·
...

NhSh√
2 · 3

NhSh√
3 · 4

NhSh√
4 · 5

· · ·
...

NHSH√
2 · 3

NHSH√
3 · 4

NHSH√
4 · 5

· · ·

Note that the array of priority values in Step 2′ is the same as the previous array in
Step 2 of Rule 1 except the first column of priority values has been removed. Only
priority values with the following values in the denominator

√
2 · 3,

√
3 · 4,

√
4 · 5,...

are in the array when we require at least two units from each stratum.

Step 3′: Pick the n− 2H largest priority values from the above array in Step 2′ along with
the associated strata. Each stratum is allocated an additional sample unit each
time one of its priority values is among the n− 2H largest values.

If three units are required from each stratum, by careful consideration of the definition of nh

and n′
h in equations (8)− (13), it is clear that the optimal allocation of n would follow in a similar

way by first assigning three units to be selected from each stratum and then considering an array
that only has priority values with the following values in the denominator

√
3 · 4,

√
4 · 5,

√
5 · 6,...
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Generalizations beyond 3 sample units per stratum follow in a similar manner.

Note that the size of the array in Algorithm II is not greater than (H) × (n − 2H) because it
is possible that all n−2H sample units in Step 3 of Algorithm II could come from the first stratum.

2.3 Example: Exact Optimal Sample Allocation

Assume a stratified population of N = 149 units distributed among H = 3 strata as noted
below with the desire to select a stratified random sample to estimate the unknown value of the
total TY .

Stratum 1 Stratum 2 Stratum 3

N1 = 47 N2 = 61 N3 = 41

S2
1 = 100 S2

2 = 36 S2
3 = 16

For n = 10, the optimum allocation can be found by applying Algorithm I as follows.

Step 1: First, assign one unit to be selected from each stratum.
Step 2: Compute the 3× 7 array of priority values as noted below.

NhSh
1√
1 · 2

1√
2 · 3

1√
3 · 4

1√
4 · 5

1√
5 · 6

1√
6 · 7

1√
7 · 8

nh

470 332.34 191.88 135.68 105.10 85.81 72.52 62.81 4

366 258.80 149.42 105.66 81.84 66.82 56.48 48.91 4

164 115.97 66.95 47.34 36.67 29.94 25.31 21.92 2

Step 3: The n − 3 = 7 largest priority values from the above array in Step 2 are noted
in bold. The optimum allocation that gives minimum variance is given in the last
column of the above table.

Thus the exact optimal sample allocation is n1 = 4, n2 = 4, and n3 = 2, and it can be shown
that V arExOpt(T̂Y ) = 94, 610.

Applying (4), it is easy to show that the Neyman allocation yields n1 = 4.70, n2 = 3.66, and
n3 = 1.64. Applying controlled rounding as mentioned at the end of Section 1 of this paper, we
see that strata 1, 2, and 3 get 4, 3, and 1 units allocated respectively by considering the integer
parts of n1, n2, and n3. But 4 + 3 + 1 = 8 units, and 2 more units are needed to bring the overall
sample size to n = 10. The largest fractional part is .70 which is associated with stratum 1. So
this brings the sample size for stratum 1 to 5 ( = 4 + 1), and the overall sample count to 9. The
next largest fractional part is .66 which is associated with stratum 2. This brings the sample size
for stratum 2 to 4. Because the overall sample size is n = 10, this leads to the allocation n1 = 5,
n2 = 4, and n3 = 1 with V arNey(T̂Y ) = 97, 013.

Because V arExOpt(T̂Y ) < V arNey(T̂Y ) in this example, we see that controlled rounding with
Neyman allocation does not always lead to optimum allocation. Also, by applying the Exact
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Optimal Allocation Algorithm II, it is easy to show that the optimum allocation is n1 = 4, n2 = 4,
and n3 = 2, if the desire is to have nh ≥ 2 for h = 1, 2, and 3.

3. INTREPRETATION OF THE VALUES
N2

hS2
h

(mh − 1)(mh)
FOR mh = 2, ..., Nh

In this section, we give an intrepretation of the values in (11), or equivalently the values in (12).

Assume a simple random sample of size mh from the hth stratum and let ȳmh
be the sample

mean based on the mh sample units. Then the contribution to the estimator T̂Y from the hth

stratum is Nhȳmh
and

V ar(Nhȳmh
) = N2

h

(
Nh −mh

Nh

)
S2

h

mh

=
N2

hS2
h

mh
−NhS2

h

= N2
hS2

h

(
1− 1

1 · 2
− 1

2 · 3
− · · · − 1

(mh − 1)(mh)

)
−NhS2

h

= (N2
hS2

h −NhS2
h)−

(
N2

hS2
h

1 · 2
+

N2
hS2

h

2 · 3
+ · · ·+ N2

hS2
h

(mh − 2)(mh − 1)
+

N2
hS2

h

(mh − 1)(mh)

)
(14)

is the associated sampling error from the hth stratum with mh sampling units. Similarly the asso-
ciated sampling error from the hth stratum based on mh − 1 sampling units is

V ar(Nhȳmh−1) = N2
h

(
Nh − (mh − 1)

Nh

)
S2

h

mh − 1
.

= (N2
hS2

h −NhS2
h)−

(
N2

hS2
h

1 · 2
+

N2
hS2

h

2 · 3
+ · · ·+ N2

hS2
h

(mh − 2)(mh − 1)

)
.

(15)

When the sample size for the hth stratum is increased from mh− 1 to mh, the associated sampling
error for the hth stratum “decreases” by

V ar(Nhȳmh−1)− V ar(Nhȳmh
) =

N2
hS2

h

(mh − 1)(mh)
(16)

using (14) and (15). The result in (16) is also the amount by which the overall sampling error
V ar(T̂Y ) “decreases” when the sample size for the hth stratum is increased from mh − 1 to mh.

When the n − H largest terms are selected sequentially as stated in Algorithm I, each selection
decreases the V ar(T̂Y ) by an associated priority value from a stratum which is the largest amount

possible at that point. Also by picking the value
N2

hS2
h

(mh − 1)(mh)
(or equivalently

NhSh√
(mh − 1)(mh)

),

it is clear that up to and including that point, we have a sample size of mh from the hth stratum
for h = 1, 2, ...,H.

4. EXACT OPTIMAL SAMPLE ALLOCATION FOR
ANY MIXED CONSTRAINT PATTERNS

4.1 Varying Strata Minimum and Maximum Sample Size Constraints

Algorithm I gives the exact optimal allocation of fixed n assuming the constraint nh ≥ 1 for

h = 1, ...,H and under the additional constraint n =
H∑

h=1

nh; clearly n ≥ H. Algorithm II gives the

8



exact optimal allocation of fixed n assuming the constraint nh ≥ 2 for h = 1, ...,H and under the

additional constraint n =
H∑

h=1

nh; clearly n ≥ 2H. Each algorithm sets the same minimum for the

number of sample units to be selected from each stratum [Algorithm I calls for at least 1 sample
unit from each stratum; Algorithm II calls for at least 2 sample units from each stratum].

Given the intrepretation in Section 3, it is possible to set varying minimum sample sizes for the
strata as well as varying maximum sample sizes for the strata. That is, for example, we may want
to have mixed constraints 2 ≤ n1 ≤ 7; 3 ≤ n2 ≤ 6; 1 ≤ n3 ≤ 10; etc. More generally, let ah and bh

be integers such that we have the following constraints for h = 1, 2, ...,H:

n =
H∑

h=1

nh; (17)

0 < ah ≤ nh ≤ bh ≤ Nh. (18)

We refer to the combination of constraints in (17) - (18) as a mixed constraint pattern where
for h = 1, ...,H, (1) the overall sample size is n; and (2) nh can be any integer between ah and bh

inclusive.

From the discussion in Section 3, it follows immediately that the following Algorithm III yields
an exact optimal sample allocation of fixed n under the mixed constraint pattern in (17) - (18) to
minimize V ar(T̂Y ).

Exact Optimal Allocation Algorithm III

Step 1: Determine an array as given assuming N1S1 ≥ N2S2 ≥ · · · ≥ NHSH .

N1S1√
1 · 2

N1S1√
2 · 3

N1S1√
3 · 4

· · ·
...

NhSh√
1 · 2

NhSh√
2 · 3

NhSh√
3 · 4

· · ·
...

NHSH√
1 · 2

NHSH√
2 · 3

NHSH√
3 · 4

· · ·

Step 2: Assume the mixed constraint pattern in (17) - (18). On the hth row (stratum) of the array, remove
the values in all of the columns less than or equal to the (ah − 1)th column and the values in all of
the columns greater than the (bh − 1)th column for h = 1, ...,H.

Step 3: From the hth row (stratum), at least ah units and no more than bh units are to be included in the

sample. So from the remaining values in the array from Step 2, select the largest n−
H∑

h=1

ah values

to complete the overall allocation of n among the H strata. Each stratum is allocated an additional

sample unit each time one of its priority values is among the n −
H∑

h=1

ah largest values from the

resulting array from Step 2.

Note that the size of the array in Algorithm III need not be greater than (H)× (max{bh}+ 1).
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4.2 Example to Illustrate Algorithm III

Recall the stratified population of N = 149 units in Section 2.3. Again, assume the constraint

n =
3∑

h=1

nh = 10. Assume the additional mixed constraint pattern: 1 ≤ n1 ≤ 5; 2 ≤ n2 ≤ 6; and

3 ≤ n3 ≤ 4. Note that max{bh} + 1 = 7. Then the exact optimal sample allocation can be found
by applying the Exact Optimal Alocation Algorithm III as follows.

Step 1: Compute the 3× 7 array of priority values as noted below.

NhSh
1√
1 · 2

1√
2 · 3

1√
3 · 4

1√
4 · 5

1√
5 · 6

1√
6 · 7

1√
7 · 8

nh

470 332.34 191.88 135.68 105.10 85.81 72.52 62.81

366 258.80 149.42 105.66 81.84 66.82 56.48 48.91

164 115.97 66.95 47.34 36.67 29.94 25.31 21.92

Step 2: Applying Step 2 of Algorithm III that reflects the mixed constraint pattern, the 3×7 array reduces to:

NhSh
1√
1 · 2

1√
2 · 3

1√
3 · 4

1√
4 · 5

1√
5 · 6

1√
6 · 7

1√
7 · 8

nh

470 332.34 191.88 135.68 105.10 − − −

366 − 149.42 105.66 81.84 66.82 − −

164 − − 47.34 − − − −

Step 3: The n−
3∑

h=1

ah = 10− (1+2+3) = 4 largest priority values from the above array in Step 2 are noted

in bold below. The optimal allocation which gives minimum variance subject to all constraints is given in
the last column of the array below, and it is n1 = 4, n2 = 3, and n3 = 3.

NhSh
1√
1 · 2

1√
2 · 3

1√
3 · 4

1√
4 · 5

1√
5 · 6

1√
6 · 7

1√
7 · 8

nh

470 332.34 191.88 135.68 105.10 − − − 4

366 − 149.42 105.66 81.84 66.82 − − 3

164 − − 47.34 − − − − 3
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For each feasible allocation (n1, n2, n3) of n = 10 among the three strata subject to the mixed constraint
pattern (1 ≤ n1 ≤ 5; 2 ≤ n2 ≤ 6; 3 ≤ n3 ≤ 4), Table 1 gives the associated values of V ar(T̂Y ). We see that
the minimum variance does indeed occur with n1 = 4, n2 = 3, and n3 = 3 as obtained above.

Table 1: Feasible Allocations of n = 10 Under Mixed Constraint Pattern and Associated V ar(T̂Y )

n1 n2 n3 V ar(N1ȳ1) V ar(N2ȳ2) V ar(N3ȳ3) V ar(T̂Y )
1 6 3 216,200.00 20,130.00 8,309.33 244,639.33
2 5 3 105,750.00 24,595.20 8,309.33 138,654.53
3 4 3 68,933.33 31,293.00 8,309.33 108,535.66
4 3 3 50,525.00 42,456.00 8,309.33 101,290.33
5 2 3 39,480.00 64,782.00 8,309.33 112,571.33
1 5 4 216,200.00 24,595.20 6,068.00 246,863.20
2 4 4 105,750.00 31,293.00 6,068.00 143,111.00
3 3 4 68,933.33 42,456.00 6,068.00 117,457.33
4 2 4 50,525.00 64,782.00 6,068.00 121,375.00

Consider rows 1 and 2 of Table 1. Note that as n1 increases from 1 to 2, V ar(N1ȳ1) decreases by 216,200

- 105,750 = 110,450 =
N2

1 S2
1

1 · 2
. (Note that

√
N2

1 S2
1

1 · 2
≈ 332.34 is the entry in the first row and first column

of the 3× 7 array in Step 1.) Also as n2 decreases from 6 to 5, V ar(N2ȳ2) increases by 24,595.2 - 20,130 =

4,465.2 =
N2

2 S2
2

5 · 6
. The sample size n3 is unchanged between rows 1 and 2. Thus the overall V ar(T̂Y ) changes

from 244,639.33 to 138,654.53 ( = 244,639.33 - 110,450 + 4,465.2).

5. CONCLUSION

Perhaps the most important advance in probability sampling theory is Neyman’s 1934 paper in which
he provides arguably the most widely used and known concept of stratification and optimal allocation of the
sample. The exact result in Wright (2012) improves upon the method by Neyman and guarantees integers
for all strata optimal sample sizes, as desired, while yielding minimum sampling variance.

In this paper, we also generalize the exact result to varying sample size constraints on the different strata.
The results of this paper are simple, exact, and optimal.

This presentation seeks to reach a wide audience. In a more efficient implementation of the algorithms,
one need not precompute every priority value in a rectangular array as described. Instead, in each step
for each stratum, one computes the currently applicable priority value. So initially you compute H priority
values, inserting each into a sorted list as you go. This approach cuts down on the computations considerably.

The most interesting aspect of this paper is that we have given algorithms that are simple in concept and
execution to solve nonlinear optimization problems with a linear constraint over a space of integer values. We
understand that the algorithms could be described as “greedy” algorithms (Cormen, Leiserson, Rivest, and
Stein, 2009) because they work by allocating sample units to strata one by one, and in each step, we choose
the allocation which minimizes the objective function V ar(T̂Y ). We understand further that it’s common
that greedy algorithms are easy to compute but are not guaranteed to find the global optimum. It is worth
noting that the algorithms presented in this paper are greedy algorithms that do find the global optimum,
always.
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